Travelled to:
1 × Belgium
1 × China
1 × Denmark
1 × Italy
1 × Spain
1 × United Kingdom
2 × France
23 × USA
3 × Canada
Collaborated with:
H.Toivonen ∅ K.Räihä E.Ukkonen A.Gionis E.Terzi A.I.Verkamo J.K.Seppänen P.Kilpeläinen G.Das P.Smyth E.Bingham R.Back A.Ukkonen P.Ronkainen D.Gunopulos M.Salmenkivi C.Meek J.Kivinen T.Mielikäinen K.Puolamäki G.C.Garriga E.Junttila A.Dasgupta M.Fortelius F.N.Afrati F.Geerts T.Kujala I.V.Cadez D.Pavlov T.Eiter G.Gottlob T.Lappas P.Tsaparas R.Khardon M.Holsheimer M.L.Kersten H.Heikinheimo E.Hinkkanen K.Lin G.Renganathan R.Agrawal R.Srikant M.Klemettinen S.Hanhijärvi M.Ojala N.Vuokko N.Tatti
Talks about:
data (17) mine (8) find (6) algorithm (5) random (5) discov (5) rule (5) set (5) databas (4) order (4)
Person: Heikki Mannila
DBLP: Mannila:Heikki
Facilitated 1 volumes:
Contributed to:
Wrote 48 papers:
- KDD-2010-LappasTGM #network #social
- Finding effectors in social networks (TL, ET, DG, HM), pp. 1059–1068.
- KDD-2009-HanhijarviOVPTM #data mining #mining
- Tell me something I don’t know: randomization strategies for iterative data mining (SH, MO, NV, KP, NT, HM), pp. 379–388.
- KDD-2009-Mannila #data mining #mining
- Randomization methods in data mining (HM), pp. 5–6.
- KDD-2008-GarrigaJM #matrix
- Banded structure in binary matrices (GCG, EJ, HM), pp. 292–300.
- KDD-2007-HeikinheimoSHMM #set
- Finding low-entropy sets and trees from binary data (HH, JKS, EH, HM, TM), pp. 350–359.
- KDD-2007-MannilaT
- Nestedness and segmented nestedness (HM, ET), pp. 480–489.
- SIGMOD-2007-DasguptaDM #approach #database #random
- A random walk approach to sampling hidden databases (AD, GD, HM), pp. 629–640.
- KDD-2006-GionisMMT #data mining #mining
- Assessing data mining results via swap randomization (AG, HM, TM, PT), pp. 167–176.
- KDD-2006-GionisMPU #algorithm #order
- Algorithms for discovering bucket orders from data (AG, HM, KP, AU), pp. 561–566.
- KDD-2005-UkkonenFM #partial order
- Finding partial orders from unordered 0-1 data (AU, MF, HM), pp. 285–293.
- KDD-2004-AfratiGM #approximate #set
- Approximating a collection of frequent sets (FNA, AG, HM), pp. 12–19.
- KDD-2004-SeppanenM
- Dense itemsets (JKS, HM), pp. 683–688.
- VLDB-2004-GeertsMT #ranking #relational
- Relational link-based ranking (FG, HM, ET), pp. 552–563.
- KDD-2003-GionisKM #order
- Fragments of order (AG, TK, HM), pp. 129–136.
- ICALP-2002-Mannila #data mining #mining #problem
- Local and Global Methods in Data Mining: Basic Techniques and Open Problems (HM), pp. 57–68.
- KDD-2002-BinghamMS #topic
- Topics in 0--1 data (EB, HM, JKS), pp. 450–455.
- KDD-2001-BinghamM #image #random #reduction
- Random projection in dimensionality reduction: applications to image and text data (EB, HM), pp. 245–250.
- KDD-2001-CadezSM #modelling #predict #probability #profiling #transaction #visualisation
- Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction (IVC, PS, HM), pp. 37–46.
- KDD-2001-MannilaS #sequence
- Finding simple intensity descriptions from event sequence data (HM, MS), pp. 341–346.
- KDD-2000-MannilaM #partial order
- Global partial orders from sequential data (HM, CM), pp. 161–168.
- KDD-1999-MannilaPS #predict #using
- Prediction with Local Patterns using Cross-Entropy (HM, DP, PS), pp. 357–361.
- KDD-1998-DasLMRS
- Rule Discovery from Time Series (GD, KIL, HM, GR, PS), pp. 16–22.
- KDD-1998-DasMR #similarity
- Similarity of Attributes by External Probes (GD, HM, PR), pp. 23–29.
- ILPS-1997-Mannila #data mining #database #induction #mining
- Inductive Databases and Condensed Representations for Data Mining (HM), pp. 21–30.
- PODS-1997-GunopulosKMT #data mining #machine learning #mining
- Data mining, Hypergraph Transversals, and Machine Learning (DG, RK, HM, HT), pp. 209–216.
- AKDDM-1996-AgrawalMSTV #performance
- Fast Discovery of Association Rules (RA, HM, RS, HT, AIV), pp. 307–328.
- ICML-1996-Mannila #data mining #machine learning #mining
- Data Mining and Machine Learning (HM), p. 555.
- KDD-1996-MannilaT #using
- Discovering Generalized Episodes Using Minimal Occurrences (HM, HT), pp. 146–151.
- KDD-1996-MannilaT96a #multi #set
- Multiple Uses of Frequent Sets and Condensed Representations (HM, HT), pp. 189–194.
- KDD-1995-HolsheimerKMT #data mining #database #mining
- A Perspective on Databases and Data Mining (MH, MLK, HM, HT), pp. 150–155.
- KDD-1995-MannilaTV #sequence
- Discovering Frequent Episodes in Sequences (HM, HT, AIV), pp. 210–215.
- CIKM-1994-KlemettinenMRTV #scalability #set
- Finding Interesting Rules from Large Sets of Discovered Association Rules (MK, HM, PR, HT, AIV), pp. 401–407.
- KDD-1994-MannilaTV #algorithm #performance
- Efficient Algorithms for Discovering Association Rules (HM, HT, AIV), pp. 181–192.
- PODS-1994-EiterGM #datalog
- Adding Disjunction to Datalog (TE, GG, HM), pp. 267–278.
- PODS-1994-KivinenM #information management #power of
- The Power of Sampling in Knowledge Discovery (JK, HM), pp. 77–85.
- SIGIR-1993-KilpelainenM #retrieval
- Retrieval from Hierarchical Texts by Partial Patterns (PK, HM), pp. 214–222.
- PODS-1989-MannilaR #algorithm #normalisation #testing
- Practical Algorithms for Finding Prime Attributes and Testing Normal Forms (HM, KJR), pp. 128–133.
- SLP-1987-MannilaU87 #analysis #prolog #source code
- Flow Analysis of Prolog Programs (HM, EU), pp. 205–214.
- VLDB-1987-MannilaR #dependence
- Dependency Inference (HM, KJR), pp. 155–158.
- ICALP-1986-MannilaU #backtracking #problem #set
- The Set Union Problem with Backtracking (HM, EU), pp. 236–243.
- ICLP-1986-MannilaU86 #complexity #on the #sequence #unification
- On the Complexity of Unification Sequences (HM, EU), pp. 122–133.
- PODS-1986-MannilaR #query #relational #testing
- Test Data for Relational Queries (HM, KJR), pp. 217–223.
- SLP-1986-MannilaU86 #implementation #prolog #representation
- Timestamped Term Representation for Implementing Prolog (HM, EU), pp. 159–165.
- PODS-1985-MannilaR #database #design
- Small Armstrong Relations for Database Design (HM, KJR), pp. 245–250.
- ICALP-1984-Mannila #algorithm #metric #sorting
- Measures of Presortedness and Optimal Sorting Algorithms (HM), pp. 324–336.
- POPL-1983-BackMR #algorithm #graph #performance
- Derivation of Efficient DAG Marking Algorithms (RJB, HM, KJR), pp. 20–27.
- ICALP-1982-BackM #composition #locality
- Locality in Modular Systems (RJB, HM), pp. 1–13.
- CAAP-1991-KilpelainenM #problem
- The Tree Inclusion Problem (PK, HM), pp. 202–214.