Travelled to:
1 × Australia
1 × China
1 × Israel
1 × Slovenia
1 × United Kingdom
2 × Canada
20 × USA
Collaborated with:
U.M.Fayyad I.V.Cadez D.Pavlov D.Newman D.Chudova S.Gaffney S.Kirshner R.M.Goodman C.Chemudugunta H.Mannila A.T.Ihler C.DuBois A.U.Asuncion G.Piatetsky-Shapiro M.Steyvers M.Lichman R.Krestel S.White X.Ge E.J.Keogh D.Wolpert M.C.Burl P.Perona ∅ J.Mellstrom M.Welling K.Bache J.Hutchins S.Parise A.G.Gray D.Kotzias M.Denil N.d.Freitas D.Q.Vu D.R.Hunter Q.Liu M.Rosen-Zvi T.L.Griffiths E.Mjolsness C.E.McLaren G.J.McLachlan K.Hagedorn J.R.Foulds L.Boyles C.Kamath E.Cantú-Paz D.Heckerman C.Meek S.White G.Das K.Lin G.Renganathan M.Ghil K.Ide J.Roden A.Fraser I.Porteous
Talks about:
model (16) use (9) data (8) probabilist (7) discoveri (6) cluster (6) pattern (5) topic (5) mixtur (4) latent (4)
Person: Padhraic Smyth
DBLP: Smyth:Padhraic
Facilitated 2 volumes:
Contributed to:
Wrote 44 papers:
- KDD-2015-KotziasDFS #using
- From Group to Individual Labels Using Deep Features (DK, MD, NdF, PS), pp. 597–606.
- KDD-2014-LichmanS #kernel #modelling
- Modeling human location data with mixtures of kernel densities (ML, PS), pp. 35–44.
- KDD-2013-BacheNS #documentation #metric
- Text-based measures of document diversity (KB, DN, PS), pp. 23–31.
- KDD-2013-FouldsBDSW #probability
- Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation (JRF, LB, CD, PS, MW), pp. 446–454.
- RecSys-2013-KrestelS #recommendation #topic
- Recommending patents based on latent topics (RK, PS), pp. 395–398.
- ICML-2011-VuAHS #modelling #network
- Dynamic Egocentric Models for Citation Networks (DQV, AUA, DRH, PS), pp. 857–864.
- ICML-2010-AsuncionLIS
- Particle Filtered MCMC-MLE with Connections to Contrastive Divergence (AUA, QL, ATI, PS), pp. 47–54.
- KDD-2010-DuBoisS #modelling #relational
- Modeling relational events via latent classes (CD, PS), pp. 803–812.
- CIKM-2008-ChemuduguntaSS #concept #modelling #statistics #topic
- Combining concept hierarchies and statistical topic models (CC, PS, MS), pp. 1469–1470.
- KDD-2008-PorteousNIASW #performance
- Fast collapsed gibbs sampling for latent dirichlet allocation (IP, DN, ATI, AUA, PS, MW), pp. 569–577.
- ICML-2007-KirshnerS #infinity
- Infinite mixtures of trees (SK, PS), pp. 417–423.
- KDD-2006-IhlerHS #adaptation #detection #process
- Adaptive event detection with time-varying poisson processes (ATI, JH, PS), pp. 207–216.
- KDD-2006-NewmanCS #modelling #statistics #topic
- Statistical entity-topic models (DN, CC, PS), pp. 680–686.
- KDD-2004-SteyversSRG #modelling #probability #topic
- Probabilistic author-topic models for information discovery (MS, PS, MRZ, TLG), pp. 306–315.
- ICML-2003-KirshnerPS #learning #permutation
- Unsupervised Learning with Permuted Data (SK, SP, PS), pp. 345–352.
- KDD-2003-ChudovaGMS #clustering #invariant #modelling
- Translation-invariant mixture models for curve clustering (DC, SG, EM, PS), pp. 79–88.
- KDD-2003-WhiteS #algorithm #network
- Algorithms for estimating relative importance in networks (SW, PS), pp. 266–275.
- ICPR-v2-2002-KirshnerCSKC #detection #modelling #probability
- Probabilistic Model-Based Detection of Bent-Double Radio Galaxies (SK, IVC, PS, CK, ECP), pp. 499–502.
- KDD-2002-ChudovaS #markov #sequence
- Pattern discovery in sequences under a Markov assumption (DC, PS), pp. 153–162.
- KDD-2001-CadezSM #modelling #predict #probability #profiling #transaction #visualisation
- Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction (IVC, PS, HM), pp. 37–46.
- KDD-2001-PavlovS #modelling #probability #query #transaction
- Probabilistic query models for transaction data (DP, PS), pp. 164–173.
- KDD-2000-CadezGS #clustering #framework #probability
- A general probabilistic framework for clustering individuals and objects (IVC, SG, PS), pp. 140–149.
- KDD-2000-CadezHMSW #clustering #modelling #navigation #using #visualisation #web
- Visualization of navigation patterns on a Web site using model-based clustering (IVC, DH, CM, PS, SW), pp. 280–284.
- KDD-2000-GeS #markov #pattern matching
- Deformable Markov model templates for time-series pattern matching (XG, PS), pp. 81–90.
- KDD-2000-PavlovCS #scalability #towards #using
- Towards scalable support vector machines using squashing (DP, DC, PS), pp. 295–299.
- ICML-1999-CadezMSM #modelling
- Hierarchical Models for Screening of Iron Deficiency Anemia (IVC, CEM, PS, GJM), pp. 77–86.
- KDD-1999-GaffneyS #clustering #modelling
- Trajectory Clustering with Mixtures of Regression Models (SG, PS), pp. 63–72.
- KDD-1999-MannilaPS #predict #using
- Prediction with Local Patterns using Cross-Entropy (HM, DP, PS), pp. 357–361.
- KDD-1998-DasLMRS
- Rule Discovery from Time Series (GD, KIL, HM, GR, PS), pp. 16–22.
- KDD-1997-KeoghS #approach #database #pattern matching #performance #probability
- A Probabilistic Approach to Fast Pattern Matching in Time Series Databases (EJK, PS), pp. 24–30.
- KDD-1997-SmythGIRF #clustering #detection #using
- Detecting Atmospheric Regimes Using Cross-Validated Clustering (PS, MG, KI, JR, AF), pp. 61–66.
- KDD-1997-SmythW #data analysis #set
- Anytime Exploratory Data Analysis for Massive Data Sets (PS, DW), pp. 54–60.
- AKDDM-1996-FayyadPS #bibliography #data mining #information management #mining #perspective
- From Data Mining to Knowledge Discovery: An Overview (UMF, GPS, PS), pp. 1–34.
- AKDDM-1996-SmythFBP #image #modelling #nondeterminism
- Modeling Subjective Uncertainty in Image Annotation (PS, UMF, MCB, PP), pp. 517–539.
- KDD-1996-FayyadPS #data mining #framework #information management #mining #towards
- Knowledge Discovery and Data Mining: Towards a Unifying Framework (UMF, GPS, PS), pp. 82–88.
- KDD-1996-Smyth #clustering #monte carlo #using
- Clustering Using Monte Carlo Cross-Validation (PS), pp. 126–133.
- ICML-1995-SmythGF #classification #estimation #kernel #using
- Retrofitting Decision Tree Classifiers Using Kernel Density Estimation (PS, AGG, UMF), pp. 506–514.
- KDD-1994-SmythBFP #database #image #information management #nondeterminism #scalability
- Knowledge Discovery in Large Image Databases: Dealing with Uncertainties in Ground Truth (PS, MCB, UMF, PP), pp. 109–120.
- ML-1992-SmythM #detection #fault #novel
- Detecting Novel Classes with Applications to Fault Diagnosis (PS, JM), pp. 416–425.
- KDD-1991-SmythG #induction #using
- Rule Induction Using Information Theory (PS, RMG), pp. 159–176.
- ML-1989-GoodmanS #algorithm #induction #probability #set
- The Induction of Probabilistic Rule Sets — The Itrule Algorithm (RMG, PS), pp. 129–132.
- DL-1994-FayyadS #analysis #approach #automation #image #library #machine learning
- The Automated Analysis, Cataloging, and Searching of Digital Image Libraries: A Machine Learning Approach (UMF, PS), pp. 225–249.
- JCDL-2007-NewmanHCS #metadata #modelling #statistics #topic #using
- Subject metadata enrichment using statistical topic models (DN, KH, CC, PS), pp. 366–375.