BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Chile
1 × Egypt
1 × Germany
1 × Greece
1 × India
1 × Ireland
1 × Korea
1 × Norway
1 × Sweden
1 × Switzerland
1 × United Kingdom
2 × Australia
2 × Italy
2 × Spain
3 × France
31 × USA
5 × China
6 × Canada
Collaborated with:
H.Tong Y.Sakurai J.Leskovec I.Kamel J.Sun S.Papadimitriou L.Li L.Akoglu B.A.Prakash A.J.M.Traina C.T.Jr. J.Pan T.K.Sellis U.Kang T.Eliassi-Rad Y.Matsubara S.Kim H.V.Jagadish F.Korn D.Koutra N.Roussopoulos B.Gallagher D.H.Chau C.R.Palmer A.Beutel F.Guo D.Chakrabarti L.Wu E.P.Xing J.I.Hong R.T.Ng S.Christodoulakis S.Günnemann E.E.Papalexakis C.Böhm C.Plant Y.Tao D.Papadias E.Riedel J.Ha M.Yoshikawa M.McGlohon N.Sidiropoulos A.Metwally A.Kittur R.F.Murphy E.Airoldi B.Yi G.Proietti V.Gaede K.Lin A.Belussi D.N.Metaxas S.Roseman R.Chan A.Tomkins J.Vreeken S.Park P.S.Yu G.R.Ganger M.Faloutsos K.Henderson A.J.M.Traina N.Günnemann J.C.Tseng H.K.Pao C.Liu K.Onuma Y.Koren T.G.Kolda D.Tao E.Hoke J.M.Kleinberg K.S.McCurley A.Brockwell P.B.Gibbons Z.Bi D.Margaritis S.Thrun Y.Ishikawa R.Subramanya G.A.Gibson Y.Matias A.Silberschatz M.Ranganathan Y.Manolopoulos R.Agrawal R.Srikant W.Gatterbauer D.Jin Y.Ning W.G.v.Panhuis R.Rosenfeld A.Harpale D.Bae S.Hwang M.Jang K.Kim J.H.Lee H.Qu H.Jamjoom N.Du B.Wang J.McCann N.S.Pollard C.E.Tsourakakis G.L.Miller Z.Guo Z.Zhang E.P.M.d.Sousa D.S.Modha H.Yang P.Duygulu B.Liu R.F.S.Filho B.Seeger D.Nagle K.P.Sycara T.R.Payne A.Labrinidis Y.Kotidis A.F.Costa Y.Yamaguchi N.Shah T.Zou M.Jiang P.Cui S.Yang S.Kwon T.Iwata C.Lin S.Bay M.G.Anderle D.M.Steier N.Valler D.Andersen H.L.Razente M.C.N.Barioni W.Fu T.C.Mowry M.R.Vieira A.S.Arantes A.G.R.Balan J.F.R.Jr. O.Raz R.B.Buchheit M.Shaw P.Koopman E.L.Siegel Z.Protopapas D.Jensen A.Fyshe N.D.Sidiropoulos P.P.Talukdar T.M.Mitchell B.Fu J.Lin N.M.Sadeh I.Shafer K.Ren V.N.Boddeti Y.Abe M.Mongiovì P.Bogdanov R.Ranca A.K.Singh R.L.F.Cordeiro J.López C.M.Liang J.Liu S.Nath A.Terzis D.Surian N.Liu D.Lo E.Lim M.Seshadri S.Machiraju A.Sridharan J.Bolot A.Krause C.Guestrin J.M.VanBriesen N.S.Glance R.J.B.Jr. J.Kiernan R.Rantzau R.Kumar A.Tuzhilin G.Kossinets K.Maruhashi D.Tsichritzis P.Economopoulos A.Lee D.Lee J.Vandenbroeck C.C.Woo S.Basu M.J.Carey S.P.Ghosh M.A.W.Houtsma T.Imielinski B.R.Iyer A.Mahboob H.Miranda A.N.Swami T.E.Senator H.G.Goldberg A.Memory W.T.Young B.Rees R.Pierce D.Huang M.Reardon D.A.Bader E.Chow I.A.Essa J.Jones V.Bettadapura O.Green O.Kaya A.Zakrzewska E.Briscoe R.L.M.IV R.McColl L.Weiss T.G.Dietterich A.Fern W.Wong S.Das A.Emmott J.Irvine J.Y.Lee D.D.Corkill L.Friedland A.Gentzel
Talks about:
mine (40) graph (32) larg (22) data (21) fast (20) time (17) use (15) queri (11) network (10) databas (10)

Person: Christos Faloutsos

DBLP DBLP: Faloutsos:Christos

Facilitated 2 volumes:

KDD 2003Ed
SIGMOD 1999Ed

Contributed to:

KDD 20152015
SIGMOD 20152015
VLDB 20152015
KDD 20142014
SIGMOD 20142014
KDD 20132013
CIKM 20122012
KDD 20122012
SIGMOD 20122012
VLDB 20122012
CHI 20112011
CIKM 20112011
KDD 20112011
SIGIR 20112011
WCRE 20112011
KDD 20102010
KDIR 20102010
VLDB 20102010
CIKM 20092009
KDD 20092009
CIKM 20082008
KDD 20082008
SIGMOD 20082008
VLDB 20082008
ICML 20072007
KDD 20072007
SIGMOD 20072007
CIKM 20062006
KDD 20062006
SAC 20062006
VLDB 20062006
KDD 20052005
PODS 20052005
SIGMOD 20052005
VLDB 20052005
KDD 20042004
SEKE 20042004
SIGMOD 20042004
VLDB 20042004
CIKM 20032003
VLDB 20032003
CIKM 20022002
KDD 20022002
VLDB 20022002
KDD 20012001
VLDB 20012001
SIGMOD 20002000
VLDB 20002000
CIKM 19981998
VLDB 19981998
SIGMOD 19971997
VLDB 19971997
VLDB 19961996
SIGMOD 19951995
VLDB 19951995
PODS 19941994
SIGMOD 19941994
VLDB 19941994
CIKM 19931993
SIGMOD 19921992
VLDB 19921992
SIGMOD 19911991
VLDB 19911991
PODS 19891989
VLDB 19881988
SIGMOD 19871987
VLDB 19871987
SIGMOD 19861986
SIGMOD 19851985
VLDB 19851985
VLDB 19831983
JCDL 20012001

Wrote 138 papers:

KDD-2015-BeutelAF #behaviour #detection #graph #modelling #predict
Graph-Based User Behavior Modeling: From Prediction to Fraud Detection (AB, LA, CF), pp. 2309–2310.
KDD-2015-CostaYTTF #mining #modelling #named #process #social #social media
RSC: Mining and Modeling Temporal Activity in Social Media (AFC, YY, AJMT, CTJ, CF), pp. 269–278.
KDD-2015-ShahKZGF #graph #named #summary
TimeCrunch: Interpretable Dynamic Graph Summarization (NS, DK, TZ, BG, CF), pp. 1055–1064.
SIGMOD-2015-SakuraiMF #mining
Mining and Forecasting of Big Time-series Data (YS, YM, CF), pp. 919–922.
VLDB-2015-GatterbauerGKF
Linearized and Single-Pass Belief Propagation (WG, SG, DK, CF), pp. 581–592.
VLDB-2015-KoutraJNF #graph #interactive #mining #named #scalability #visualisation
Perseus: An Interactive Large-Scale Graph Mining and Visualization Tool (DK, DJ, YN, CF), pp. 1924–1935.
KDD-2014-GunnemannGF #detection #evolution #probability #rating #robust
Detecting anomalies in dynamic rating data: a robust probabilistic model for rating evolution (SG, NG, CF), pp. 841–850.
KDD-2014-JiangCBFY #behaviour #graph #named #scalability
CatchSync: catching synchronized behavior in large directed graphs (MJ, PC, AB, CF, SY), pp. 941–950.
KDD-2014-MatsubaraSPF #automation #mining #named
FUNNEL: automatic mining of spatially coevolving epidemics (YM, YS, WGvP, CF), pp. 105–114.
KDD-2014-PapalexakisFSTMF #algorithm #challenge #multi
Good-enough brain model: challenges, algorithms and discoveries in multi-subject experiments (EEP, AF, NDS, PPT, TMM, CF), pp. 95–104.
SIGMOD-2014-MatsubaraSF #automation #co-evolution #mining #named #sequence
AutoPlait: automatic mining of co-evolving time sequences (YM, YS, CF), pp. 193–204.
KDD-2013-FuLLFHS #feedback #mobile #people #why
Why people hate your app: making sense of user feedback in a mobile app store (BF, JL, LL, CF, JIH, NMS), pp. 1276–1284.
KDD-2013-SenatorGMYRPHRBCEJBCGKZBMMWDFWDEILKFCFGJ #database #detection #process
Detecting insider threats in a real corporate database of computer usage activity (TES, HGG, AM, WTY, BR, RP, DH, MR, DAB, EC, IAE, JJ, VB, DHC, OG, OK, AZ, EB, RLMI, RM, LW, TGD, AF, WKW, SD, AE, JI, JYL, DK, CF, DDC, LF, AG, DJ), pp. 1393–1401.
CIKM-2012-AkogluTVF #category theory #detection #performance #reliability
Fast and reliable anomaly detection in categorical data (LA, HT, JV, CF), pp. 415–424.
CIKM-2012-HaKKFP #recommendation
Top-N recommendation through belief propagation (JH, SHK, SWK, CF, SP), pp. 2343–2346.
CIKM-2012-TongPEFF #graph #scalability
Gelling, and melting, large graphs by edge manipulation (HT, BAP, TER, MF, CF), pp. 245–254.
KDD-2012-BeutelPRF #network #question
Interacting viruses in networks: can both survive? (AB, BAP, RR, CF), pp. 426–434.
KDD-2012-ChauAVTF #graph #interactive #named #scalability #visualisation
TourViz: interactive visualization of connection pathways in large graphs (DHC, LA, JV, HT, CF), pp. 1516–1519.
KDD-2012-HendersonGETBAKFL #graph #mining #named #scalability
RolX: structural role extraction & mining in large graphs (KH, BG, TER, HT, SB, LA, DK, CF, LL), pp. 1231–1239.
KDD-2012-KangPHF #algorithm #analysis #named #scalability
GigaTensor: scaling tensor analysis up by 100 times — algorithms and discoveries (UK, EEP, AH, CF), pp. 316–324.
KDD-2012-MatsubaraSFIY #mining #performance
Fast mining and forecasting of complex time-stamped events (YM, YS, CF, TI, MY), pp. 271–279.
KDD-2012-MatsubaraSPLF #information management
Rise and fall patterns of information diffusion: model and implications (YM, YS, BAP, LL, CF), pp. 6–14.
KDD-2012-ShaferRBAGF #approach #mining #monitoring #named
RainMon: an integrated approach to mining bursty timeseries monitoring data (IS, KR, VNB, YA, GRG, CF), pp. 1158–1166.
SIGMOD-2012-AkogluCKKF #graph #mining #named #scalability #visualisation
OPAvion: mining and visualization in large graphs (LA, DHC, UK, DK, CF), pp. 717–720.
SIGMOD-2012-FaloutsosK #algorithm #graph #mining #scalability
Managing and mining large graphs: patterns and algorithms (CF, UK), pp. 585–588.
SIGMOD-2012-MongioviBRSPF #mining #named #network
SigSpot: mining significant anomalous regions from time-evolving networks (MM, PB, RR, AKS, EEP, CF), p. 865.
VLDB-2012-MetwallyF #framework #multi #named #pipes and filters #scalability #similarity
V-SMART-Join: A Scalable MapReduce Framework for All-Pair Similarity Joins of Multisets and Vectors (AM, CF), pp. 704–715.
VLDB-2012-PrakashF #comprehension #graph #scalability
Understanding and Managing Cascades on Large Graphs (BAP, CF), pp. 2024–2025.
CHI-2011-ChauKHF #interactive #machine learning #named #network #scalability
Apolo: making sense of large network data by combining rich user interaction and machine learning (DHC, AK, JIH, CF), pp. 167–176.
CIKM-2011-BaeHKF
Constructing seminal paper genealogy (DHB, SMH, SWK, CF), pp. 2101–2104.
CIKM-2011-JangKFP #approximate #distance #linear
A linear-time approximation of the earth mover’s distance (MHJ, SWK, CF, SP), pp. 505–514.
CIKM-2011-KimKFL #analysis
Spectral analysis of a blogosphere (SWK, KNK, CF, JHL), pp. 2145–2148.
KDD-2011-ChauKHF #graph #interactive #machine learning #named #scalability #visualisation
Apolo: interactive large graph sensemaking by combining machine learning and visualization (DHC, AK, JIH, CF), pp. 739–742.
KDD-2011-CordeiroTTLKF #clustering #dataset #multi #pipes and filters #scalability
Clustering very large multi-dimensional datasets with MapReduce (RLFC, CTJ, AJMT, JL, UK, CF), pp. 690–698.
KDD-2011-HendersonGLAETF #graph #mining #recursion #using
It’s who you know: graph mining using recursive structural features (KH, BG, LL, LA, TER, HT, CF), pp. 663–671.
KDD-2011-KangTSLF #graph #named #scalability
GBASE: a scalable and general graph management system (UK, HT, JS, CYL, CF), pp. 1091–1099.
KDD-2011-LiLLNTF #cyber-physical #named
ThermoCast: a cyber-physical forecasting model for datacenters (LL, CJML, JL, SN, AT, CF), pp. 1370–1378.
SIGIR-2011-KimFH #information management
BlogCast effect on information diffusion in a blogosphere (SWK, CF, JH), pp. 1149–1150.
WCRE-2011-SurianLLTLF #collaboration #developer #network #people #recommendation
Recommending People in Developers’ Collaboration Network (DS, NL, DL, HT, EPL, CF), pp. 379–388.
KDD-2010-HendersonEFALMPT #approach #forensics #graph #metric #mining #multi
Metric forensics: a multi-level approach for mining volatile graphs (KH, TER, CF, LA, LL, KM, BAP, HT), pp. 163–172.
KDIR-2010-TsengPF #classification #markov #using
The Typhoon Track Classification using Tri-plots and Markov Chain (JCHT, HKKP, CF), pp. 364–369.
VLDB-2010-LiPF #linear
Parsimonious Linear Fingerprinting for Time Series (LL, BAP, CF), pp. 385–396.
CIKM-2009-TongQJF #graph #interactive #named #performance #proximity #query
iPoG: fast interactive proximity querying on graphs (HT, HQ, HJ, CF), pp. 1673–1676.
KDD-2009-DuFWA #communication #generative #network #scalability
Large human communication networks: patterns and a utility-driven generator (ND, CF, BW, LA), pp. 269–278.
KDD-2009-LiMPF #mining #named #sequence #summary
DynaMMo: mining and summarization of coevolving sequences with missing values (LL, JM, NSP, CF), pp. 507–516.
KDD-2009-LiuGF #named
BBM: bayesian browsing model from petabyte-scale data (CL, FG, CF), pp. 537–546.
KDD-2009-McGlohonBASF #detection #graph #named
SNARE: a link analytic system for graph labeling and risk detection (MM, SB, MGA, DMS, CF), pp. 1265–1274.
KDD-2009-OnumaTF #algorithm #named #novel #recommendation
TANGENT: a novel, “Surprise me”, recommendation algorithm (KO, HT, CF), pp. 657–666.
KDD-2009-PrakashVAFF #internet #named
BGP-lens: patterns and anomalies in internet routing updates (BAP, NV, DA, MF, CF), pp. 1315–1324.
KDD-2009-TsourakakisKMF #graph #named
DOULION: counting triangles in massive graphs with a coin (CET, UK, GLM, CF), pp. 837–846.
CIKM-2008-RazenteBTFT #approach #data access #metric #novel #optimisation #process #query #similarity
A novel optimization approach to efficiently process aggregate similarity queries in metric access methods (HLR, MCNB, AJMT, CF, CTJ), pp. 193–202.
CIKM-2008-TongSEF #mining #performance
Fast mining of complex time-stamped events (HT, YS, TER, CF), pp. 759–768.
KDD-2008-GallagherTEF #classification #network #using
Using ghost edges for classification in sparsely labeled networks (BG, HT, TER, CF), pp. 256–264.
KDD-2008-KumarTFJKLT #network #social
Social networks: looking ahead (RK, AT, CF, DJ, GK, JL, AT), p. 1060.
KDD-2008-LiFGMF #learning #linear #named #parallel #performance
Cut-and-stitch: efficient parallel learning of linear dynamical systems on smps (LL, WF, FG, TCM, CF), pp. 471–479.
KDD-2008-McGlohonAF #component #generative #graph
Weighted graphs and disconnected components: patterns and a generator (MM, LA, CF), pp. 524–532.
KDD-2008-SeshadriMSBFL #graph #mobile
Mobile call graphs: beyond power-law and lognormal distributions (MS, SM, AS, JB, CF, JL), pp. 596–604.
KDD-2008-TongPSYF #graph #mining #named #performance #scalability
Colibri: fast mining of large static and dynamic graphs (HT, SP, JS, PSY, CF), pp. 686–694.
SIGMOD-2008-BohmFP #clustering #component #independence #using
Outlier-robust clustering using independent components (CB, CF, CP), pp. 185–198.
VLDB-2008-GuoLFX #database #multi #named #query
C-DEM: a multi-modal query system for Drosophila Embryo databases (FG, LL, CF, EPX), pp. 1508–1511.
ICML-2007-LeskovecF #graph #modelling #multi #scalability #using
Scalable modeling of real graphs using Kronecker multiplication (JL, CF), pp. 497–504.
KDD-2007-GuoZXF #data mining #database #learning #mining #multimodal
Enhanced max margin learning on multimodal data mining in a multimedia database (ZG, ZZ, EPX, CF), pp. 340–349.
KDD-2007-LeskovecKGFVG #detection #effectiveness #network
Cost-effective outbreak detection in networks (JL, AK, CG, CF, JMV, NSG), pp. 420–429.
KDD-2007-SunFPY #graph #mining #named #scalability
GraphScope: parameter-free mining of large time-evolving graphs (JS, CF, SP, PSY), pp. 687–696.
KDD-2007-TongFGE #graph #pattern matching #performance #scalability
Fast best-effort pattern matching in large attributed graphs (HT, CF, BG, TER), pp. 737–746.
KDD-2007-TongFK #graph #mining #performance #proximity
Fast direction-aware proximity for graph mining (HT, CF, YK), pp. 747–756.
SIGMOD-2007-FaloutsosKS #graph #matrix #mining #scalability #tool support #using
Mining large graphs and streams using matrix and tensor tools (CF, TGK, JS), p. 1174.
CIKM-2006-TrainaTVAF #performance #query #similarity
Efficient processing of complex similarity queries in RDBMS through query rewriting (CTJ, AJMT, MRV, ASA, CF), pp. 4–13.
KDD-2006-BohmFPP #clustering #robust
Robust information-theoretic clustering (CB, CF, JYP, CP), pp. 65–75.
KDD-2006-LeskovecF #graph #scalability
Sampling from large graphs (JL, CF), pp. 631–636.
KDD-2006-PanGBXTF #automation #image #mining
Automatic mining of fruit fly embryo images (JYP, AGRB, EPX, AJMT, CF), pp. 693–698.
KDD-2006-SunTF #analysis #graph
Beyond streams and graphs: dynamic tensor analysis (JS, DT, CF), pp. 374–383.
KDD-2006-TongF #performance #problem
Center-piece subgraphs: problem definition and fast solutions (HT, CF), pp. 404–413.
SAC-2006-SousaTTF #data type #evolution
Evaluating the intrinsic dimension of evolving data streams (EPMdS, AJMT, CTJ, CF), pp. 643–648.
VLDB-2006-HokeSF #clustering #monitoring #named #scalability
InteMon: Intelligent System Monitoring on Large Clusters (EH, JS, CF), pp. 1239–1242.
VLDB-2006-RodriguesTTFL #graph #interactive #mining #named #scalability #visualisation
GMine: A System for Scalable, Interactive Graph Visualization and Mining (JFRJ, HT, AJMT, CF, JL), pp. 1195–1198.
KDD-2005-LeskovecKF #graph
Graphs over time: densification laws, shrinking diameters and possible explanations (JL, JMK, CF), pp. 177–187.
PODS-2005-SakuraiYF #distance #named #performance #similarity
FTW: fast similarity search under the time warping distance (YS, MY, CF), pp. 326–337.
SIGMOD-2005-MurphyF #database #image #research
Research issues in protein location image databases (RFM, CF), pp. 966–967.
SIGMOD-2005-SakuraiPF #correlation #mining #named
BRAID: Stream Mining through Group Lag Correlations (YS, SP, CF), pp. 599–610.
VLDB-2005-PapadimitriouSF #multi #streaming
Streaming Pattern Discovery in Multiple Time-Series (SP, JS, CF), pp. 697–708.
KDD-2004-AiroldiF #network
Recovering latent time-series from their observed sums: network tomography with particle filters (EA, CF), pp. 30–39.
KDD-2004-ChakrabartiPMF #automation
Fully automatic cross-associations (DC, SP, DSM, CF), pp. 79–88.
KDD-2004-FaloutsosMT #performance
Fast discovery of connection subgraphs (CF, KSM, AT), pp. 118–127.
KDD-2004-PanYFD #automation #correlation #multi
Automatic multimedia cross-modal correlation discovery (JYP, HJY, CF, PD), pp. 653–658.
SEKE-2004-RazBSKF #automation #elicitation
Automated Assistance for Eliciting User Expectations (OR, RBB, MS, PK, CF), pp. 80–85.
SIGMOD-2004-Faloutsos #mining
Indexing and Mining Streams (CF), p. 969.
SIGMOD-2004-TaoFPL #predict
Prediction and Indexing of Moving Objects with Unknown Motion Patterns (YT, CF, DP, BL), pp. 611–622.
VLDB-2004-AgrawalBFKRS #database
Auditing Compliance with a Hippocratic Database (RA, RJBJ, CF, JK, RR, RS), pp. 516–527.
CIKM-2003-TaoFP #estimation #multi #query
The power-method: a comprehensive estimation technique for multi-dimensional queries (YT, CF, DP), pp. 83–90.
VLDB-2003-PapadimitriouBF #adaptation #mining
Adaptive, Hands-Off Stream Mining (SP, AB, CF), pp. 560–571.
CIKM-2002-ChakrabartiF #automation #named #scalability #using
F4: large-scale automated forecasting using fractals (DC, CF), pp. 2–9.
CIKM-2002-Faloutsos #data mining #mining #network #self
Future directions in data mining: streams, networks, self-similarity and power laws (CF), p. 93.
CIKM-2002-PanF #data mining #library #mining #quote #video
“GeoPlot”: spatial data mining on video libraries (JYP, CF), pp. 405–412.
CIKM-2002-TrainaTFF #data access #how #metric
How to improve the pruning ability of dynamic metric access methods (CTJ, AJMT, RFSF, CF), pp. 219–226.
KDD-2002-PalmerGF #data mining #graph #mining #named #performance #scalability
ANF: a fast and scalable tool for data mining in massive graphs (CRP, PBG, CF), pp. 81–90.
KDD-2002-WuF #performance #scalability
Making every bit count: fast nonlinear axis scaling (LW, CF), pp. 664–669.
VLDB-2002-Faloutsos #analysis #data mining #mining #similarity
Sensor Data Mining: Similarity Search and Pattern Analysis (CF).
KDD-2001-BiFK #mining
The “DGX” distribution for mining massive, skewed data (ZB, CF, FK), pp. 17–26.
KDD-2001-TrainaTPF #data mining #mining #multi #named #scalability #tool support
Tri-plots: scalable tools for multidimensional data mining (AJMT, CTJ, SP, CF), pp. 184–193.
VLDB-2001-MargaritisFT #data mining #mining #named #performance #scalability
NetCube: A Scalable Tool for Fast Data Mining and Compression (DM, CF, ST), pp. 311–320.
SIGMOD-2000-FaloutsosSTT #using
Spatial Join Selectivity Using Power Laws (CF, BS, AJMT, CTJ), pp. 177–188.
SIGMOD-2000-PalmerF #clustering #data mining #mining
Density Biased Sampling: An Improved Method for Data Mining and Clustering (CRP, CF), pp. 82–92.
SIGMOD-2000-RiedelFGN #data mining #for free #mining
Data Mining on an OLTP System (Nearly) for Free (ER, CF, GRG, DN), pp. 13–21.
VLDB-2000-WuFSP #adaptation #feedback #named #retrieval
FALCON: Feedback Adaptive Loop for Content-Based Retrieval (LW, CF, KPS, TRP), pp. 297–306.
VLDB-2000-YiF #performance #sequence
Fast Time Sequence Indexing for Arbitrary Lp Norms (BKY, CF), pp. 385–394.
CIKM-1998-ProviettiF #estimation #query
Selectivity Estimation of Window Queries (GP, CF), pp. 340–347.
VLDB-1998-IshikawaSF #database #multi #named #query
MindReader: Querying Databases Through Multiple Examples (YI, RS, CF), pp. 218–227.
VLDB-1998-KornLKF #data mining #mining #paradigm #performance
Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining (FK, AL, YK, CF), pp. 582–593.
VLDB-1998-RiedelGF #data mining #mining #multi #scalability
Active Storage for Large-Scale Data Mining and Multimedia (ER, GAG, CF), pp. 62–73.
SIGMOD-1997-KornJF #ad hoc #dataset #query #scalability #sequence
Efficiently Supporting Ad Hoc Queries in Large Datasets of Time Sequences (FK, HVJ, CF), pp. 289–300.
VLDB-1997-FaloutsosJS #summary
Recovering Information from Summary Data (CF, HVJ, NS), pp. 36–45.
VLDB-1997-SellisRF #data access #multi
Multidimensional Access Methods: Trees Have Grown Everywhere (TKS, NR, CF), pp. 13–14.
VLDB-1996-FaloutsosG #analysis #using
Analysis of n-Dimensional Quadtrees using the Hausdorff Fractal Dimension (CF, VG), pp. 40–50.
VLDB-1996-FaloutsosMS #modelling #multi #using
Modeling Skewed Distribution Using Multifractals and the “80-20” Law (CF, YM, AS), pp. 307–317.
VLDB-1996-KornSFSP #database #image #nearest neighbour #performance
Fast Nearest Neighbor Search in Medical Image Databases (FK, NS, CF, ELS, ZP), pp. 215–226.
SIGMOD-1995-Faloutsos #database #multi
Indexing Multimedia Databases (CF), p. 467.
SIGMOD-1995-FaloutsosL #algorithm #dataset #multi #named #performance #visualisation
FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets (CF, KIL), pp. 163–174.
VLDB-1995-BelussiF #correlation #query #using
Estimating the Selectivity of Spatial Queries Using the “Correlation” Fractal Dimension (AB, CF), pp. 299–310.
PODS-1994-FaloutsosK #analysis #concept #independence #using
Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension (CF, IK), pp. 4–13.
SIGMOD-1994-AgrawalCFGHIIMMSS #database #mining #named
Quest: A Project on Database Mining (RA, MJC, CF, SPG, MAWH, TI, BRI, AM, HM, RS, ANS), p. 514.
SIGMOD-1994-FaloutsosRM #database #performance #sequence
Fast Subsequence Matching in Time-Series Databases (CF, MR, YM), pp. 419–429.
VLDB-1994-KamelF #using
Hilbert R-tree: An Improved R-tree using Fractals (IK, CF), pp. 500–509.
CIKM-1993-KamelF #on the
On Packing R-trees (IK, CF), pp. 490–499.
SIGMOD-1992-KamelF #parallel
Parallel R-trees (IK, CF), pp. 195–204.
VLDB-1992-FaloutsosJ #on the
On B-Tree Indices for Skewed Distributions (CF, HVJ), pp. 363–374.
SIGMOD-1991-NgFS #flexibility
Flexible Buffer Allocation Based on Marginal Gains (RTN, CF, TKS), pp. 387–396.
VLDB-1991-FaloutsosNS #flexibility #predict
Predictive Load Control for Flexible Buffer Allocation (CF, RTN, TKS), pp. 265–274.
PODS-1989-FaloutsosM #clustering #fault #using
Declustering Using Error Correcting Codes (CF, DNM), pp. 253–258.
PODS-1989-FaloutsosR #retrieval
Fractals for Secondary Key Retrieval (CF, SR), pp. 247–252.
VLDB-1988-FaloutsosC #comparison #data access #design #performance #scalability
Fast Text Access Methods for Optical and Large Magnetic Disks: Designs and Performance Comparison (CF, RC), pp. 280–293.
SIGMOD-1987-FaloutsosSR #analysis #data access #object-oriented
Analysis of Object Oriented Spatial Access Methods (CF, TKS, NR), pp. 426–439.
VLDB-1987-SellisRF #multi
The R+-Tree: A Dynamic Index for Multi-Dimensional Objects (TKS, NR, CF), pp. 507–518.
SIGMOD-1986-Faloutsos #multi #using
Multiattribute Hashing Using Gray Codes (CF), pp. 227–238.
SIGMOD-1985-Faloutsos #comparison #design #performance
Signature files: Design and Performance Comparison of Some Signature Extraction Methods (CF), pp. 63–82.
VLDB-1985-FaloutsosC #design #query
Design of a Signature File Method that Accounts for Non-Uniform Occurrence and Query Frequencies (CF, SC), pp. 165–170.
VLDB-1983-TsichritzisCEFLLVW #multi
A Multimedia Office Filing System (DT, SC, PE, CF, AL, DL, JV, CCW), pp. 2–7.
JCDL-2001-PanFV #classification #mining #named #video
VideoGraph: a new tool for video mining and classification (JYP, CF), pp. 116–117.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.