BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Austria
1 × Finland
1 × France
1 × Israel
1 × Switzerland
1 × United Kingdom
13 × USA
2 × Australia
2 × Canada
2 × Germany
3 × China
Collaborated with:
A.Ahmed Q.V.Le Y.Wang L.Song S.V.N.Vishwanathan B.Schölkopf C.S.Ong A.Gretton M.Li T.Gärtner S.Canu Y.Low V.Josifovski S.M.Narayanamurthy T.S.Caetano V.Nikulin K.M.Borgwardt M.Aly S.Yang B.Long H.Zha D.G.Andersen S.E.Fienberg S.R.Flaxman Z.Liu R.J.Tibshirani L.Hong T.Sarlós N.d.Freitas M.Zoghi S.Matsushima D.Agarwal M.Weimer A.Karatzoglou Y.Altun T.Hofmann M.N.Murty C.Campbell N.Cristianini L.Zhou A.Q.Li S.Ravi T.Zhang Y.Chen J.Huang K.Fukumizu N.Quadrianto C.H.Teo J.J.McAuley M.O.Franz X.Mary P.A.Flach A.Kowalczyk S.Flaxman A.G.Wilson D.Neill H.Nickisch N.Du M.Farajtabar W.Zhang J.Yang D.Lopez-Paz S.Sra Z.Ghahramani C.Tan E.H.Chi D.A.Huffaker G.Kossinets A.Das T.Anastasakos Y.Chang Z.Zheng B.Boots S.M.Siddiqi G.J.Gordon K.Q.Weinberger A.Dasgupta J.Langford J.Attenberg X.Zhang J.Bedo Q.Diao M.Qiu C.Wu J.Jiang C.Wang J.W.Park J.Long E.J.Shekita B.Su
Talks about:
learn (8) process (6) model (6) gaussian (5) machin (5) distribut (4) applic (4) space (4) user (4) support (3)

Person: Alexander J. Smola

DBLP DBLP: Smola:Alexander_J=

Contributed to:

ICML 20152015
KDD 20152015
RecSys 20152015
ICML c2 20142014
KDD 20142014
OSDI 20142014
CIKM 20132013
ICML c3 20132013
KDD 20132013
CIKM 20122012
ICML 20122012
KDD 20122012
SIGIR 20122012
KDD 20112011
SIGIR 20112011
ICML 20102010
VLDB 20102010
ICML 20092009
ICML 20082008
RecSys 20082008
ICML 20072007
KDD 20072007
ICML 20062006
ICML 20052005
MLDM 20052005
ICML 20042004
ICML 20032003
ICML 20022002
ICML 20002000

Wrote 45 papers:

ICML-2015-FlaxmanWNNS #performance #process
Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods (SF, AGW, DN, HN, AJS), pp. 607–616.
ICML-2015-WangFS #for free #monte carlo #privacy #probability
Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo (YXW, SEF, AJS), pp. 2493–2502.
KDD-2015-DuFASS #clustering #documentation #process
Dirichlet-Hawkes Processes with Applications to Clustering Continuous-Time Document Streams (ND, MF, AA, AJS, LS), pp. 219–228.
KDD-2015-FlaxmanWS
Who Supported Obama in 2012?: Ecological Inference through Distribution Regression (SRF, YXW, AJS), pp. 289–298.
KDD-2015-ZhangAYJS #email #information management
Annotating Needles in the Haystack without Looking: Product Information Extraction from Emails (WZ, AA, JY, VJ, AJS), pp. 2257–2266.
KDD-2015-ZhouALS #algebra #linear
Cuckoo Linear Algebra (LZ, DGA, ML, AJS), pp. 1553–1562.
RecSys-2015-LiuWS #matrix #performance
Fast Differentially Private Matrix Factorization (ZL, YXW, AJS), pp. 171–178.
ICML-c2-2014-Lopez-PazSSGS #analysis #component #random
Randomized Nonlinear Component Analysis (DLP, SS, AJS, ZG, BS), pp. 1359–1367.
ICML-c2-2014-WangST #statistics
The Falling Factorial Basis and Its Statistical Applications (YXW, AJS, RJT), pp. 730–738.
KDD-2014-DiaoQWSJW #aspect-oriented #modelling #recommendation #sentiment
Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) (QD, MQ, CYW, AJS, JJ, CW), pp. 193–202.
KDD-2014-LiARS #complexity #modelling #topic
Reducing the sampling complexity of topic models (AQL, AA, SR, AJS), pp. 891–900.
KDD-2014-LiZCS #optimisation #performance #probability
Efficient mini-batch training for stochastic optimization (ML, TZ, YC, AJS), pp. 661–670.
OSDI-2014-LiAPSAJLSS #distributed #machine learning #parametricity #scalability
Scaling Distributed Machine Learning with the Parameter Server (ML, DGA, JWP, AJS, AA, VJ, JL, EJS, BYS), pp. 583–598.
CIKM-2013-TanCHKS #predict
Instant foodie: predicting expert ratings from grassroots (CT, EHC, DAH, GK, AJS), pp. 1127–1136.
ICML-c3-2013-AhmedHS #documentation #modelling #process
Nested Chinese Restaurant Franchise Process: Applications to User Tracking and Document Modeling (AA, LH, AJS), pp. 1426–1434.
ICML-c3-2013-LeSS #named
Fastfood — Computing Hilbert Space Expansions in loglinear time (QVL, TS, AJS), pp. 244–252.
KDD-2013-AhmedS #modelling #parametricity #scalability
The dataminer’s guide to scalable mixed-membership and nonparametric bayesian models (AA, AJS), p. 1529.
CIKM-2012-AhmedADSA #behaviour #feature model #multi
Web-scale multi-task feature selection for behavioral targeting (AA, MA, AD, AJS, TA), pp. 1737–1741.
ICML-2012-FreitasSZ #bound #exponential #process
Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations (NdF, AJS, MZ), p. 125.
KDD-2012-MatsushimaVS #linear
Linear support vector machines via dual cached loops (SM, SVNV, AJS), pp. 177–185.
SIGIR-2012-YangSLZC #network #predict #social
Friend or frenemy?: predicting signed ties in social networks (SHY, AJS, BL, HZ, YC), pp. 555–564.
KDD-2011-AhmedLAJS #behaviour #distributed #scalability
Scalable distributed inference of dynamic user interests for behavioral targeting (AA, YL, MA, VJ, AJS), pp. 114–122.
KDD-2011-LowAS #multi #personalisation
Multiple domain user personalization (YL, DA, AJS), pp. 123–131.
SIGIR-2011-YangLSZZ #collaboration #learning #recommendation #using
Collaborative competitive filtering: learning recommender using context of user choice (SHY, BL, AJS, HZ, ZZ), pp. 295–304.
ICML-2010-SongSGS #markov #modelling
Hilbert Space Embeddings of Hidden Markov Models (LS, BB, SMS, GJG, AJS), pp. 991–998.
VLDB-2010-SmolaN #architecture #modelling #parallel #topic
An Architecture for Parallel Topic Models (AJS, SMN), pp. 703–710.
ICML-2009-SongHSF
Hilbert space embeddings of conditional distributions with applications to dynamical systems (LS, JH, AJS, KF), pp. 961–968.
ICML-2009-WeinbergerDLSA #learning #multi #scalability
Feature hashing for large scale multitask learning (KQW, AD, JL, AJS, JA), pp. 1113–1120.
ICML-2008-QuadriantoSCL
Estimating labels from label proportions (NQ, AJS, TSC, QVL), pp. 776–783.
ICML-2008-SongZSGS #estimation #kernel
Tailoring density estimation via reproducing kernel moment matching (LS, XZ, AJS, AG, BS), pp. 992–999.
RecSys-2008-WeimerKS #adaptation #collaboration
Adaptive collaborative filtering (MW, AK, AJS), pp. 275–282.
ICML-2007-SongSGB #clustering #dependence
A dependence maximization view of clustering (LS, AJS, AG, KMB), pp. 815–822.
ICML-2007-SongSGBB #dependence #estimation #feature model
Supervised feature selection via dependence estimation (LS, AJS, AG, KMB, JB), pp. 823–830.
KDD-2007-TeoSVL #composition #scalability
A scalable modular convex solver for regularized risk minimization (CHT, AJS, SVNV, QVL), pp. 727–736.
ICML-2006-LeSG #knowledge-based
Simpler knowledge-based support vector machines (QVL, AJS, TG), pp. 521–528.
ICML-2006-McAuleyCSF #higher-order #image #learning
Learning high-order MRF priors of color images (JJM, TSC, AJS, MOF), pp. 617–624.
ICML-2005-LeSC #process
Heteroscedastic Gaussian process regression (QVL, AJS, SC), pp. 489–496.
MLDM-2005-NikulinS #clustering #probability
Universal Clustering with Regularization in Probabilistic Space (VN, AJS), pp. 142–152.
ICML-2004-AltunHS #classification #process #sequence
Gaussian process classification for segmenting and annotating sequences (YA, TH, AJS).
ICML-2004-OngMCS #kernel #learning
Learning with non-positive kernels (CSO, XM, SC, AJS).
ICML-2003-OngS #kernel #machine learning
Machine Learning with Hyperkernels (CSO, AJS), pp. 568–575.
ICML-2003-VishwanathanSM
SimpleSVM (SVNV, AJS, MNM), pp. 760–767.
ICML-2002-GartnerFKS #kernel #multi
Multi-Instance Kernels (TG, PAF, AK, AJS), pp. 179–186.
ICML-2000-CampbellCS #classification #learning #query #scalability
Query Learning with Large Margin Classifiers (CC, NC, AJS), pp. 111–118.
ICML-2000-SmolaS #approximate #machine learning #matrix
Sparse Greedy Matrix Approximation for Machine Learning (AJS, BS), pp. 911–918.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.