225 papers:
- CASE-2015-SterlingSZC #algorithm #optimisation #parametricity #process
- Welding parameter optimization based on Gaussian process regression Bayesian optimization algorithm (DS, TS, YZ, HC), pp. 1490–1496.
- DRR-2015-FengPL #process #recognition
- Gaussian process style transfer mapping for historical Chinese character recognition (JF, LP, FL).
- STOC-2015-AggarwalDRS #problem #using
- Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling: Extended Abstract (DA, DD, OR, NSD), pp. 733–742.
- STOC-2015-CousinsV #algorithm
- Bypassing KLS: Gaussian Cooling and an O^*(n3) Volume Algorithm (BC, SV), pp. 539–548.
- STOC-2015-GeHK #learning
- Learning Mixtures of Gaussians in High Dimensions (RG, QH, SMK), pp. 761–770.
- STOC-2015-HardtP #bound #learning
- Tight Bounds for Learning a Mixture of Two Gaussians (MH, EP), pp. 753–760.
- ICML-2015-DeisenrothN #distributed #process
- Distributed Gaussian Processes (MPD, JWN), pp. 1481–1490.
- ICML-2015-FilipponeE #linear #probability #process #scalability
- Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) (MF, RE), pp. 1015–1024.
- ICML-2015-FlaxmanWNNS #performance #process
- Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods (SF, AGW, DN, HN, AJS), pp. 607–616.
- ICML-2015-GalCG #category theory #estimation #multi #process
- Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data (YG, YC, ZG), pp. 645–654.
- ICML-2015-GalT #approximate #nondeterminism #process #representation
- Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs (YG, RT), pp. 655–664.
- ICML-2015-GarnettHS #process
- Finding Galaxies in the Shadows of Quasars with Gaussian Processes (RG, SH, JS), pp. 1025–1033.
- ICML-2015-HoangHL #big data #framework #modelling #probability #process
- A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data (TNH, QMH, BKHL), pp. 569–578.
- ICML-2015-Kandemir #learning #process #symmetry
- Asymmetric Transfer Learning with Deep Gaussian Processes (MK), pp. 730–738.
- ICML-2015-LiangP #process
- Landmarking Manifolds with Gaussian Processes (DL, JP), pp. 466–474.
- ICML-2015-LloydGOR #process
- Variational Inference for Gaussian Process Modulated Poisson Processes (CML, TG, MAO, SJR), pp. 1814–1822.
- ICML-2015-MacdonaldHH #modelling #process
- Controversy in mechanistic modelling with Gaussian processes (BM, CFH, DH), pp. 1539–1547.
- ICML-2015-SamoR #parametricity #process #scalability
- Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes (YLKS, SR), pp. 2227–2236.
- ICML-2015-SuiGBK #optimisation #process
- Safe Exploration for Optimization with Gaussian Processes (YS, AG, JWB, AK), pp. 997–1005.
- ICML-2015-WilsonN #kernel #process #scalability
- Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) (AGW, HN), pp. 1775–1784.
- ICML-2015-YuanHTLC #modelling
- Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (XY, RH, ET, RL, LC), pp. 1254–1263.
- KDD-2015-YuanBM #process #re-engineering #using
- Gas Concentration Reconstruction for Coal-Fired Boilers Using Gaussian Process (CY, MB, BM), pp. 2247–2256.
- RecSys-2015-Steck #matrix #ranking
- Gaussian Ranking by Matrix Factorization (HS), pp. 115–122.
- CASE-2014-MahlerKLSMKPWFAG #learning #process #using
- Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression (JM, SK, ML, SS, AM, BK, SP, JW, MF, PA, KYG), pp. 532–539.
- DATE-2014-LangeSJHLS #correlation #modelling #parametricity #probability #standard
- Probabilistic standard cell modeling considering non-Gaussian parameters and correlations (AL, CS, RJ, JH, IL, US), pp. 1–4.
- ICML-c1-2014-NguyenB #performance #process
- Fast Allocation of Gaussian Process Experts (TVN, EVB), pp. 145–153.
- ICML-c2-2014-BarberW #difference #equation #estimation #process
- Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (DB, YW), pp. 1485–1493.
- ICML-c2-2014-BratieresQNG #graph #grid #predict #process #scalability
- Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications (SB, NQ, SN, ZG), pp. 334–342.
- ICML-c2-2014-ContalPV #optimisation #process
- Gaussian Process Optimization with Mutual Information (EC, VP, NV), pp. 253–261.
- ICML-c2-2014-GrandeWH #learning #performance #process
- Sample Efficient Reinforcement Learning with Gaussian Processes (RCG, TJW, JPH), pp. 1332–1340.
- ICML-c2-2014-HoangLJK #learning #process
- Nonmyopic ϵ-Bayes-Optimal Active Learning of Gaussian Processes (TNH, BKHL, PJ, MSK), pp. 739–747.
- ICML-c2-2014-LiuSD #approximate #modelling #visual notation
- Gaussian Approximation of Collective Graphical Models (LPL, DS, TGD), pp. 1602–1610.
- ICML-c2-2014-MengEH #learning #modelling #visual notation
- Learning Latent Variable Gaussian Graphical Models (ZM, BE, AOHI), pp. 1269–1277.
- ICML-c2-2014-ReyRF
- Sparse meta-Gaussian information bottleneck (MR, VR, TJF), pp. 910–918.
- ICML-c2-2014-RodriguesPR #classification #learning #multi #process
- Gaussian Process Classification and Active Learning with Multiple Annotators (FR, FCP, BR), pp. 433–441.
- ICML-c2-2014-ToshD #bound
- Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians (CT, SD), pp. 1467–1475.
- ICPR-2014-ChamroukhiBG #clustering #parametricity
- Bayesian Non-parametric Parsimonious Gaussian Mixture for Clustering (FC, MB, HG), pp. 1460–1465.
- ICPR-2014-Filippone #classification #process #pseudo
- Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC (MF), pp. 614–619.
- ICPR-2014-GuerreroR #process
- Circular Regression Based on Gaussian Processes (PG, JRdS), pp. 3672–3677.
- ICPR-2014-JainCL #image
- Local Binary Patterns Calculated over Gaussian Derivative Images (VJ, JLC, AL), pp. 3987–3992.
- ICPR-2014-YamashitaTYYF #strict
- To Be Bernoulli or to Be Gaussian, for a Restricted Boltzmann Machine (TY, MT, EY, YY, HF), pp. 1520–1525.
- KDIR-2014-BigdeliMRM #clustering #summary
- Arbitrary Shape Cluster Summarization with Gaussian Mixture Model (EB, MM, BR, SM), pp. 43–52.
- RecSys-2014-VanchinathanNBK #process #recommendation
- Explore-exploit in top-N recommender systems via Gaussian processes (HPV, IN, FDB, AK), pp. 225–232.
- SIGIR-2014-NguyenKB #process #recommendation
- Gaussian process factorization machines for context-aware recommendations (TVN, AK, LB), pp. 63–72.
- DAC-2013-KuruvillaSPVC #analysis #optimisation #set #statistics
- Speeding up computation of the max/min of a set of gaussians for statistical timing analysis and optimization (VK, DS, JP, CV, NC), p. 7.
- ICML-c1-2013-GilboaSCG #approximate #multi #process #scalability #using
- Scaling Multidimensional Gaussian Processes using Projected Additive Approximations (EG, YS, JPC, EG), pp. 454–461.
- ICML-c1-2013-HanL13a #analysis #component
- Principal Component Analysis on non-Gaussian Dependent Data (FH, HL), pp. 240–248.
- ICML-c1-2013-WongAF #adaptation #modelling #visual notation
- Adaptive Sparsity in Gaussian Graphical Models (EW, SPA, PTF), pp. 311–319.
- ICML-c2-2013-Lopez-PazHG #dependence #multi #process
- Gaussian Process Vine Copulas for Multivariate Dependence (DLP, JMHL, ZG), pp. 10–18.
- ICML-c3-2013-KhanAFS #modelling #performance
- Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models (MEK, AYA, MPF, MWS), pp. 951–959.
- ICML-c3-2013-RossD #constraints #parametricity #process
- Nonparametric Mixture of Gaussian Processes with Constraints (JCR, JGD), pp. 1346–1354.
- ICML-c3-2013-WilsonA #kernel #process
- Gaussian Process Kernels for Pattern Discovery and Extrapolation (AGW, RPA), pp. 1067–1075.
- ICML-c3-2013-WytockK #algorithm #energy #random #theory and practice
- Sparse Gaussian Conditional Random Fields: Algorithms, Theory, and Application to Energy Forecasting (MW, JZK), pp. 1265–1273.
- ICML-c3-2013-YangLZ #learning #matrix #multi
- Multi-Task Learning with Gaussian Matrix Generalized Inverse Gaussian Model (MY, YL, ZZ), pp. 423–431.
- KDD-2013-LiuYK #adaptation #modelling #process #using
- Adaptive collective routing using gaussian process dynamic congestion models (SL, YY, RK), pp. 704–712.
- KDD-2013-Vatsavai #approach #learning #multi #using
- Gaussian multiple instance learning approach for mapping the slums of the world using very high resolution imagery (RRV), pp. 1419–1426.
- CASE-2012-AnKP #learning #modelling #process
- Grasp motion learning with Gaussian Process Dynamic Models (BA, HK, FCP), pp. 1114–1119.
- ICML-2012-BoukouvalasBC #process #using
- Gaussian Process Quantile Regression using Expectation Propagation (AB, RB, DC), p. 123.
- ICML-2012-ChenCK #optimisation #process
- Joint Optimization and Variable Selection of High-dimensional Gaussian Processes (BC, RMC, AK), p. 179.
- ICML-2012-DesautelsKB #optimisation #process #trade-off
- Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization (TD, AK, JWB), p. 109.
- ICML-2012-FreitasSZ #bound #exponential #process
- Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations (NdF, AJS, MZ), p. 125.
- ICML-2012-LiuHYLW #modelling #visual notation
- High Dimensional Semiparametric Gaussian Copula Graphical Models (HL, FH, MY, JDL, LAW), p. 225.
- ICML-2012-NaimG #algorithm #convergence
- Convergence of the EM Algorithm for Gaussian Mixtures with Unbalanced Mixing Coefficients (IN, DG), p. 185.
- ICML-2012-ParrishG #reduction
- Dimensionality Reduction by Local Discriminative Gaussians (NP, MRG), p. 30.
- ICML-2012-WilsonKG #network #process
- Gaussian Process Regression Networks (AGW, DAK, ZG), p. 149.
- ICPR-2012-AhmedA #gesture #modelling #using
- Flow Modeling and skin-based Gaussian pruning to recognize gestural actions using HMM (ORA, AAH), pp. 3488–3491.
- ICPR-2012-BoulmerkaA #segmentation #using
- Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions (AB, MSA), pp. 2894–2897.
- ICPR-2012-DhallG #estimation #process
- Group expression intensity estimation in videos via Gaussian Processes (AD, RG), pp. 3525–3528.
- ICPR-2012-FreytagFRD #kernel #performance #process #segmentation #semantics
- Efficient semantic segmentation with Gaussian processes and histogram intersection kernels (AF, BF, ER, JD), pp. 3313–3316.
- ICPR-2012-HeLL #image #using
- Single image super-resolution using Gaussian Mixture Model (HH, JL, XL), pp. 1916–1919.
- ICPR-2012-Imajo #algorithm #performance #using
- Fast Gaussian filtering algorithm using splines (KI), pp. 489–492.
- ICPR-2012-KhanER #detection #image
- A Gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images (AMK, HED, NMR), pp. 149–152.
- ICPR-2012-LiuBFF
- Complex Gaussian Mixture Model for fingerprint minutiae (CL, JB, XF, JF), pp. 545–548.
- ICPR-2012-RiveraRC #recognition
- Local Gaussian Directional Pattern for face recognition (ARR, JARC, OC), pp. 1000–1003.
- ICPR-2012-SchwanderSNB
- k-MLE for mixtures of generalized Gaussians (OS, AJS, FN, YB), pp. 2825–2828.
- ICPR-2012-SuematsuH #process
- Time series alignment with Gaussian processes (NS, AH), pp. 2355–2358.
- ICPR-2012-TsuboshitaKFO #adaptation #image #using
- Image annotation using adapted Gaussian mixture model (YT, NK, MF, MO), pp. 1346–1350.
- KDIR-2012-DubeyBP #named
- BINGR: Binary Search based Gaussian Regression (HD, SB, VP), pp. 258–263.
- CAV-2012-HanJ #satisfiability
- When Boolean Satisfiability Meets Gaussian Elimination in a Simplex Way (CSH, JHRJ), pp. 410–426.
- DATE-2011-LiuHRG #optimisation #process #using
- Global optimization of integrated transformers for high frequency microwave circuits using a Gaussian process based surrogate model (BL, YH, PR, GGEG), pp. 1101–1106.
- ICDAR-2011-BukhariSB #set #using
- Text-Line Extraction Using a Convolution of Isotropic Gaussian Filter with a Set of Line Filters (SSB, FS, TMB), pp. 579–583.
- ICDAR-2011-NguyenB #2d #feature model #verification
- An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification (VN, MB), pp. 339–343.
- DUXU-v2-2011-Hofman #modelling #statistics
- Range Statistics and the Exact Modeling of Discrete Non-Gaussian Distributions on Learnability Data (RH), pp. 421–430.
- ICML-2011-Lazaro-GredillaT #process
- Variational Heteroscedastic Gaussian Process Regression (MLG, MKT), pp. 841–848.
- ICML-2011-MarlinKM #bound #modelling
- Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models (BMM, MEK, KPM), pp. 633–640.
- KDD-2011-HuangLYFCWR #effectiveness #modelling #network
- Brain effective connectivity modeling for alzheimer’s disease by sparse gaussian bayesian network (SH, JL, JY, AF, KC, TW, ER), pp. 931–939.
- SAC-2011-HeinenE #incremental #modelling #using
- Incremental feature-based mapping from sonar data using Gaussian mixture models (MRH, PME), pp. 1370–1375.
- CASE-2010-Tobon-MejiaMZT #markov
- A mixture of Gaussians Hidden Markov Model for failure diagnostic and prognostic (DATM, KM, NZ, GT), pp. 338–343.
- DAC-2010-DhimanMR #modelling #online #predict #using
- A system for online power prediction in virtualized environments using Gaussian mixture models (GD, KM, TR), pp. 807–812.
- STOC-2010-KalaiMV #learning
- Efficiently learning mixtures of two Gaussians (ATK, AM, GV), pp. 553–562.
- ICML-2010-BardenetK #algorithm #optimisation
- Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm (RB, BK), pp. 55–62.
- ICML-2010-HonorioS #learning #modelling #multi #visual notation
- Multi-Task Learning of Gaussian Graphical Models (JH, DS), pp. 447–454.
- ICML-2010-KimT10a #learning #multi #process
- Gaussian Processes Multiple Instance Learning (MK, FDlT), pp. 535–542.
- ICML-2010-SaatciTR #modelling #process
- Gaussian Process Change Point Models (YS, RDT, CER), pp. 927–934.
- ICML-2010-Seeger #scalability
- Gaussian Covariance and Scalable Variational Inference (MWS), pp. 967–974.
- ICML-2010-SrinivasKKS #design #optimisation #process
- Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design (NS, AK, SK, MWS), pp. 1015–1022.
- ICML-2010-YanQ #process
- Sparse Gaussian Process Regression via L1 Penalization (FY, Y(Q), pp. 1183–1190.
- ICPR-2010-Allili #retrieval #using
- Wavelet-Based Texture Retrieval Using a Mixture of Generalized Gaussian Distributions (MSA), pp. 3143–3146.
- ICPR-2010-AriA #estimation #modelling #optimisation #using
- Maximum Likelihood Estimation of Gaussian Mixture Models Using Particle Swarm Optimization (CA, SA), pp. 746–749.
- ICPR-2010-AsheriRPR #adaptation #fault #framework #kernel #process
- A Gaussian Process Regression Framework for Spatial Error Concealment with Adaptive Kernels (HA, HRR, NP, MHR), pp. 4541–4544.
- ICPR-2010-CandamoGKG #detection #using
- Detecting Wires in Cluttered Urban Scenes Using a Gaussian Model (JC, DBG, RK, SG), pp. 432–435.
- ICPR-2010-ChengQHJT #estimation #process #recognition
- Group Activity Recognition by Gaussian Processes Estimation (ZC, LQ, QH, SJ, QT), pp. 3228–3231.
- ICPR-2010-JunG #classification #process
- Nearest-Manifold Classification with Gaussian Processes (GJ, JG), pp. 914–917.
- ICPR-2010-Martinez-UsoPS #image #segmentation
- A Semi-supervised Gaussian Mixture Model for Image Segmentation (AMU, FP, JMS), pp. 2941–2944.
- ICPR-2010-MemonLM #modelling #verification
- Information Theoretic Expectation Maximization Based Gaussian Mixture Modeling for Speaker Verification (SM, ML, NCM), pp. 4536–4540.
- ICPR-2010-NacereddineTZH10a #algorithm #image #modelling #segmentation #symmetry
- Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for Image Segmentation (NN, ST, DZ, LH), pp. 4557–4560.
- ICPR-2010-SlimaneKAIH #modelling #recognition
- Gaussian Mixture Models for Arabic Font Recognition (FS, SK, AMA, RI, JH), pp. 2174–2177.
- ICPR-2010-StadelmannF #recognition
- Dimension-Decoupled Gaussian Mixture Model for Short Utterance Speaker Recognition (TS, BF), pp. 1602–1605.
- ICPR-2010-SuS #predict #process
- Latent Fingerprint Core Point Prediction Based on Gaussian Processes (CS, SNS), pp. 1634–1637.
- ICPR-2010-TanakaKO
- Progressive MAP-based Deconvolution with Pixel-Dependent Gaussian Prior (MT, TK, MO), pp. 4428–4431.
- ICPR-2010-WangJMS #process #using
- Decoding Finger Flexion from Electrocorticographic Signals Using a Sparse Gaussian Process (ZW, QJ, KJM, GS), pp. 3756–3759.
- ICPR-2010-WangM #learning #order #process #using
- Gaussian Process Learning from Order Relationships Using Expectation Propagation (RW, SJM), pp. 605–608.
- ICPR-2010-ZhangZZLL #classification #enterprise #kernel
- Gaussian ERP Kernel Classifier for Pulse Waveforms Classification (DZ, WZ, DZ, YL, NL), pp. 2736–2739.
- ICPR-2010-ZhangZZZ #classification #kernel #metric #using
- Time Series Classification Using Support Vector Machine with Gaussian Elastic Metric Kernel (DZ, WZ, DZ, HZ), pp. 29–32.
- KDIR-2010-JunGRO #image #predict #process
- Predicting Ground-based Aerosol Optical Depth with Satellite Images Via Gaussian Processes (GJ, JG, VR, ZO), pp. 370–375.
- SAC-2010-GongWWLZY #using
- Recognizing affect from non-stylized body motion using shape of Gaussian descriptors (LG, TW, CW, FL, FZ, XY), pp. 1203–1206.
- DAC-2009-TakahashiYT #analysis #statistics
- A Gaussian mixture model for statistical timing analysis (ST, YY, ST), pp. 110–115.
- ICDAR-2009-ChenLJ #estimation #modelling #orthogonal #recognition
- Unsupervised Selection and Discriminative Estimation of Orthogonal Gaussian Mixture Models for Handwritten Digit Recognition (XC, XL, YJ), pp. 1151–1155.
- ICDAR-2009-DoA #recognition
- Maximum Margin Training of Gaussian HMMs for Handwriting Recognition (TMTD, TA), pp. 976–980.
- ICDAR-2009-WangH #classification #design #fault #modelling #parametricity #precise #using
- Design Compact Recognizers of Handwritten Chinese Characters Using Precision Constrained Gaussian Models, Minimum Classification Error Training and Parameter Compression (YW, QH), pp. 36–40.
- ICML-2009-AdamsMM #parametricity #process
- Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities (RPA, IM, DJCM), pp. 9–16.
- ICML-2009-DeisenrothHH #process
- Analytic moment-based Gaussian process filtering (MPD, MFH, UDH), pp. 225–232.
- ICML-2009-JohnsonCC #representation
- Orbit-product representation and correction of Gaussian belief propagation (JKJ, VYC, MC), pp. 473–480.
- ICML-2009-LawrenceU #matrix #process
- Non-linear matrix factorization with Gaussian processes (NDL, RU), pp. 601–608.
- ICML-2009-MarlinM #modelling #visual notation
- Sparse Gaussian graphical models with unknown block structure (BMM, KPM), pp. 705–712.
- ICML-2009-Schmidt #process #using
- Function factorization using warped Gaussian processes (MNS), pp. 921–928.
- MLDM-2009-HasanG #adaptation #classification #modelling
- Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier (BASH, JQG), pp. 96–106.
- SAC-2009-BaechlerBH #image #modelling #using #verification
- Labeled images verification using Gaussian mixture models (MB, JLB, JH), pp. 1331–1335.
- SAC-2009-KontosB #modelling #network #visual notation
- An improved shrinkage estimator to infer regulatory networks with Gaussian graphical models (KK, GB), pp. 793–798.
- DAC-2008-WangLZTYTCN #scheduling
- Timing yield driven clock skew scheduling considering non-Gaussian distributions of critical path delays (YW, WSL, XZ, JT, CY, JT, WC, JN), pp. 223–226.
- CIKM-2008-SongZG #classification #framework #performance #process
- A sparse gaussian processes classification framework for fast tag suggestions (YS, LZ, CLG), pp. 93–102.
- ICML-2008-AdamsS #modelling #parametricity #process
- Gaussian process product models for nonparametric nonstationarity (RPA, OS), pp. 1–8.
- ICML-2008-CunninghamSS #estimation #performance #process
- Fast Gaussian process methods for point process intensity estimation (JPC, KVS, MS), pp. 192–199.
- ICML-2008-HyvarinenSH #modelling
- Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity (AH, SS, POH), pp. 424–431.
- ICML-2008-WalderKS #multi #process
- Sparse multiscale gaussian process regression (CW, KIK, BS), pp. 1112–1119.
- ICML-2008-ZhangDT #algorithm
- Estimating local optimums in EM algorithm over Gaussian mixture model (ZZ, BTD, AKHT), pp. 1240–1247.
- ICPR-2008-BruneauGP #approach #modelling #reduction
- Parameter-based reduction of Gaussian mixture models with a variational-Bayes approach (PB, MG, FP), pp. 1–4.
- ICPR-2008-GaoCY #modelling #process
- Manifold denoising with Gaussian Process Latent Variable Models (YG, KLC, WYY), pp. 1–4.
- ICPR-2008-HainesW #random #using
- Combining shape-from-shading and stereo using Gaussian-Markov random fields (TSFH, RCW), pp. 1–4.
- ICPR-2008-HaqueMP #adaptation #detection #generative #multi #robust
- Improved Gaussian mixtures for robust object detection by adaptive multi-background generation (MH, MMM, MP), pp. 1–4.
- ICPR-2008-LevadaMT #image #markov #modelling #on the #probability #random
- On the asymptotic variances of Gaussian Markov Random Field model hyperparameters in stochastic image modeling (ALML, NDAM, AT), pp. 1–4.
- ICPR-2008-LiDM #feature model #learning #locality #using
- Localized feature selection for Gaussian mixtures using variational learning (YL, MD, YM), pp. 1–4.
- ICPR-2008-PiccardiGO #classification #modelling #reduction
- Maximum-likelihood dimensionality reduction in gaussian mixture models with an application to object classification (MP, HG, AFO), pp. 1–4.
- ICPR-2008-RebecchiJ #on the #string
- On the gaussian distribution of strings (SR, JMJ), pp. 1–4.
- ICPR-2008-ZhouWS #classification #process #recognition #using
- Human motion recognition using Gaussian Processes classification (HZ, LW, DS), pp. 1–4.
- SIGIR-2008-GuiverS #learning #process #rank
- Learning to rank with SoftRank and Gaussian processes (JG, ES), pp. 259–266.
- DAC-2007-ChengXH #analysis #statistics
- Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources (LC, JX, LH), pp. 250–255.
- DATE-2007-ZhangOSFKB #analysis #approach #named #parametricity #process
- CMCal: an accurate analytical approach for the analysis of process variations with non-gaussian parameters and nonlinear functions (MZ, MO, DS, MF, HK, EB), pp. 243–248.
- HCI-MIE-2007-JungKK #estimation #image #modelling #using
- Human Pose Estimation Using a Mixture of Gaussians Based Image Modeling (DJJ, KSK, HJK), pp. 649–658.
- ICML-2007-KerstingPPB #process
- Most likely heteroscedastic Gaussian process regression (KK, CP, PP, WB), pp. 393–400.
- ICML-2007-KrauseG #approach #learning #process
- Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach (AK, CG), pp. 449–456.
- ICML-2007-LawrenceM #modelling #process
- Hierarchical Gaussian process latent variable models (NDL, AJM), pp. 481–488.
- ICML-2007-UrtasunD #classification #process
- Discriminative Gaussian process latent variable model for classification (RU, TD), pp. 927–934.
- ICML-2007-WangFH #modelling #multi #process
- Multifactor Gaussian process models for style-content separation (JMW, DJF, AH), pp. 975–982.
- MLDM-2007-YuZWZ #3d #image #retrieval
- A Filter-Refinement Scheme for 3D Model Retrieval Based on Sorted Extended Gaussian Image Histogram (ZY, SZ, HSW, JZ), pp. 643–652.
- DAC-2006-SinghS #analysis #component #correlation #independence #parametricity #statistics #using
- Statistical timing analysis with correlated non-gaussian parameters using independent component analysis (JS, SSS), pp. 155–160.
- DATE-2006-AbbaspourFP #analysis #statistics
- Non-gaussian statistical interconnect timing analysis (SA, HF, MP), pp. 533–538.
- ICML-2006-BanerjeeGdN #modelling #optimisation #visual notation
- Convex optimization techniques for fitting sparse Gaussian graphical models (OB, LEG, Ad, GN), pp. 89–96.
- ICML-2006-Carreira-Perpinan #clustering #parametricity #performance
- Fast nonparametric clustering with Gaussian blurring mean-shift (MÁCP), pp. 153–160.
- ICML-2006-RudaryS #modelling #predict #probability
- Predictive linear-Gaussian models of controlled stochastic dynamical systems (MRR, SPS), pp. 777–784.
- ICML-2006-SrebroSR #clustering
- An investigation of computational and informational limits in Gaussian mixture clustering (NS, GS, STR), pp. 865–872.
- ICML-2006-WingateS #kernel #linear #modelling #predict #probability
- Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems (DW, SPS), pp. 1017–1024.
- ICPR-v1-2006-LiL #probability
- Probabilistic Image-Based Rendering with Gaussian Mixture Model (WL, BL), pp. 179–182.
- ICPR-v1-2006-LinWZZ #optimisation
- Continuous Optimization based-on Boosting Gaussian Mixture Model (BL, XW, RtZ, ZZ), pp. 1192–1195.
- ICPR-v2-2006-BenaventRS #algorithm #modelling #named
- EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models (APB, FER, JMS), pp. 451–455.
- ICPR-v2-2006-ChenY #modelling #using #video
- Exploiting High Dimensional Video Features Using Layered Gaussian Mixture Models (DC, JY), pp. 1078–1081.
- ICPR-v2-2006-GrimHSP #approach #modelling #using
- A Subspace Approach to Texture Modelling by Using Gaussian Mixtures (JG, MH, PS, PP), pp. 235–238.
- ICPR-v2-2006-GuoQ #3d #learning
- Learning and Inference of 3D Human Poses from Gaussian Mixture Modeled Silhouettes (FG, GQ), pp. 43–47.
- ICPR-v2-2006-IlonenPKK #classification
- Gaussian mixture pdf in one-class classification: computing and utilizing confidence values (JI, PP, JKK, HK), pp. 577–580.
- ICPR-v2-2006-Lu #evaluation #similarity
- Joint Distributions based on DFB and Gaussian Mixtures for Evaluation of Style Similarity among Paintings (XL), pp. 865–868.
- ICPR-v3-2006-JiaZHW #classification
- Gaussian Weighted Histogram Intersection for License Plate Classification (WJ, HZ, XH, QW), pp. 574–577.
- ICPR-v3-2006-ScheundersB #component #image #multi #using
- Wavelet denoising of multicomponent images, using a Gaussian Scale Mixture model (PS, SDB), pp. 754–757.
- ICPR-v3-2006-SchlapbachB #identification #modelling #using
- Off-lineWriter Identification Using Gaussian Mixture Models (AS, HB), pp. 992–995.
- ICPR-v4-2006-LeilaC #performance #recognition #speech
- Efficient Gaussian Mixture for Speech Recognition (LZ, GC), pp. 294–297.
- SAC-2006-RouguiRAGM #documentation #modelling #retrieval #scalability #set
- Hierarchical organization of a set of Gaussian mixture speaker models for scaling up indexing and retrieval in audio documents (JER, MR, DA, MG, JMM), pp. 1369–1373.
- DAC-2005-ChangZNV #analysis #parametricity #statistics
- Parameterized block-based statistical timing analysis with non-gaussian parameters, nonlinear delay functions (HC, VZ, SN, CV), pp. 71–76.
- DAC-2005-ZhangCHGC #analysis #polynomial #statistics
- Correlation-preserved non-gaussian statistical timing analysis with quadratic timing model (LZ, WC, YH, JAG, CCPC), pp. 83–88.
- DAC-2005-ZhanSLPNS #analysis #statistics
- Correlation-aware statistical timing analysis with non-gaussian delay distributions (YZ, AJS, XL, LTP, DN, MS), pp. 77–82.
- DATE-2005-BalakrishnanT #configuration management #linear #using
- Reconfigurable Linear Decompressors Using Symbolic Gaussian Elimination (KJB, NAT), pp. 1130–1135.
- ICML-2005-ChuG #learning #process
- Preference learning with Gaussian processes (WC, ZG), pp. 137–144.
- ICML-2005-EngelMM #learning #process
- Reinforcement learning with Gaussian processes (YE, SM, RM), pp. 201–208.
- ICML-2005-GuestrinKS #process
- Near-optimal sensor placements in Gaussian processes (CG, AK, APS), pp. 265–272.
- ICML-2005-LeSC #process
- Heteroscedastic Gaussian process regression (QVL, AJS, SC), pp. 489–496.
- ICML-2005-YuTS #learning #multi #process
- Learning Gaussian processes from multiple tasks (KY, VT, AS), pp. 1012–1019.
- ICML-2004-AltunHS #classification #process #sequence
- Gaussian process classification for segmenting and annotating sequences (YA, TH, AJS).
- ICML-2004-GramacyLM #parametricity #process
- Parameter space exploration with Gaussian process trees (RBG, HKHL, WGM).
- ICPR-v1-2004-ColemanSH #design #scalability
- A Systematic Design Procedure for Scalable Near-Circular Laplacian of Gaussian Operators (SAC, BWS, MGH), pp. 700–703.
- ICPR-v2-2004-MaD #adaptation #classification #using #word
- Adaptive Word Style Classification Using a Gaussian Mixture Model (HM, DSD), pp. 606–609.
- ICPR-v2-2004-Zivkovic #adaptation
- Improved Adaptive Gaussian Mixture Model for Background Subtraction (ZZ), pp. 28–31.
- ICPR-v3-2004-BoughorbelKAA #energy
- Gaussian Energy Functions for Registration without Correspondences (FB, AK, BRA, MAA), pp. 24–27.
- ICPR-v3-2004-GimelfarbFE #linear
- Expectation-Maximization for a Linear Combination of Gaussians (GLG, AAF, AEB), pp. 422–425.
- ICPR-v3-2004-HaindlGSPK
- A Gaussian Mixture-Based Colour Texture Model (MH, JG, PS, PP, MK), pp. 177–180.
- ICPR-v3-2004-MoW #modelling #segmentation #using #video
- Video Modelling and Segmentation Using Gaussian Mixture Models (XM, RW), pp. 854–857.
- ICPR-v4-2004-OrtizMG #image
- Gaussian Noise Elimination in Colour Images by Vector-Connected Filters (FO, FTM, PG), pp. 807–810.
- ICPR-v4-2004-SinghMB #robust
- Robust KLT Tracking with Gaussian and Laplacian of Gaussian Weighting Functions (MS, MKM, AB), pp. 661–664.
- ICPR-v4-2004-WangT #modelling #recognition
- Bayesian Face Recognition Based on Gaussian Mixture Models (XW, XT), pp. 142–145.
- ICDAR-2003-GunterB #optimisation #word
- Optimizing the Number of States, Training Iterations and Gaussians in an HMM-based Handwritten Word Recognizer (SG, HB), pp. 472–476.
- ICEIS-v2-2003-TolbaMGA #algorithm #analysis #image #multi #segmentation #using
- MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm (MFT, MGM, TFG, MAMS), pp. 165–170.
- ICML-2003-EngelMM #approach #difference #learning #process
- Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning (YE, SM, RM), pp. 154–161.
- ICML-2003-Graepel #difference #equation #linear #process
- Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations (TG), pp. 234–241.
- ICML-2003-KlautauJO #classification #comparison #kernel #modelling
- Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers (AK, NJ, AO), pp. 353–360.
- ICML-2003-ZhuGL #learning #using
- Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (XZ, ZG, JDL), pp. 912–919.
- SIGIR-2003-Hofmann #analysis #collaboration #probability #semantics
- Collaborative filtering via gaussian probabilistic latent semantic analysis (TH), pp. 259–266.
- VMCAI-2003-Monniaux #abstraction #using
- Abstraction of Expectation Functions Using Gaussian Distributions (DM), pp. 161–173.
- ICPR-v2-2002-ChangHHC #detection #effectiveness #modelling
- Shadow Elimination for Effective Moving Object Detection with Gaussian Models (CJC, WFH, JWH, YSC), pp. 540–543.
- ICPR-v2-2002-GibsonCT #abstraction #modelling #using #visual notation
- Visual Abstraction of Wildlife Footage Using Gaussian Mixture Models and the Minimum Description Length Criterion (DPG, NWC, BTT), pp. 814–817.
- ICPR-v2-2002-MinagawaUT
- Region Extraction Based on Belief Propagation for Gaussian Model (AM, KU, NT), pp. 507–510.
- ICPR-v2-2002-Vaswani #classification #linear #matrix
- A Linear Classifier for Gaussian Class Conditional Distributions with Unequal Covariance Matrices (NV), pp. 60–63.
- ICPR-v2-2002-WildenauerMB #approach
- A Gradient-Based Eigenspace Approach to Dealing with Occlusions and Non-Gaussian Noise (HW, TM, HB), pp. 977–980.
- ICDAR-2001-ZhangDZ #orthogonal #recognition
- Offline Handwritten Character Recognition Based on Discriminative Training of Orthogonal Gaussian Mixture Model (RZ, XD, JZ), pp. 221–225.
- STOC-2001-SanjeevK #learning
- Learning mixtures of arbitrary gaussians (SA, RK), pp. 247–257.
- ICPR-v1-2000-GrossYW #invariant #modelling #recognition
- Growing Gaussian Mixture Models for Pose Invariant Face Recognition (RG, JY, AW), pp. 5088–5091.
- ICPR-v1-2000-Wilson #modelling #multi #named
- MGMM: Multiresolution Gaussian Mixture Models for Computer Vision (RW), pp. 1212–1215.
- ICPR-v2-2000-Figueiredo #approximate #learning #on the
- On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies (MATF), pp. 2618–2621.
- ICPR-v2-2000-Sanchez-Reillo #geometry #modelling #pattern matching #pattern recognition #recognition
- Hand Geometry Pattern Recognition through Gaussian Mixture Modeling (RSR), pp. 2937–2940.
- ICPR-v3-2000-FukuiIIW #analysis #component #using
- Sign of Gaussian Curvature from Eigen Plane Using Principal Components Analysis (SF, YI, AI, RJW), pp. 3807–3810.
- ICPR-v3-2000-PelecanosMSC #modelling #verification
- Vector Quantization Based Gaussian Modeling for Speaker Verification (JWP, SM, SS, VC), pp. 3298–3301.
- ICPR-v3-2000-Silvan-CardenasE #information management
- Optic-Flow Information Extraction with Directional Gaussian-Derivatives (JLSC, BER), pp. 3194–3197.
- ICPR-1998-SardoK #complexity #estimation #using #validation
- Model complexity validation for PDF estimation using Gaussian mixtures (LS, JK), pp. 195–197.
- ICPR-1998-VlietYV #recursion
- Recursive Gaussian derivative filters (LJvV, ITY, PWV), pp. 509–514.
- DAC-1997-NaborsFCK #modelling
- Lumped Interconnect Models Via Gaussian Quadrature (KN, TTF, HWC, KSK), pp. 40–45.
- ICDAR-1997-FrankeGKM #classification #comparison #markov #modelling #polynomial #recognition
- A Comparison of Gaussian Distribution and Polynomial Classifiers in a Hidden Markov Model Based System for the Recognition of Cursive Script (JF, JMG, AK, EM), pp. 515–518.
- ICPR-1996-IdoATS #segmentation
- Stimulus-driven segmentation by Gaussian functions (SI, SA, RT, MS), pp. 487–491.
- ICPR-1996-JacksonA
- Elliptical Gaussian filters (SAJ, NA), pp. 775–779.
- ICPR-1996-Zhao0C #image #segmentation
- Simplified Gaussian and mean curvatures to range image segmentation (CZ, DZ, YC), pp. 427–431.