BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
process (87)
model (86)
mixtur (61)
use (44)
base (33)

Stem gaussian$ (all stems)

225 papers:

CASECASE-2015-SterlingSZC #algorithm #optimisation #parametricity #process
Welding parameter optimization based on Gaussian process regression Bayesian optimization algorithm (DS, TS, YZ, HC), pp. 1490–1496.
DRRDRR-2015-FengPL #process #recognition
Gaussian process style transfer mapping for historical Chinese character recognition (JF, LP, FL).
STOCSTOC-2015-AggarwalDRS #problem #using
Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling: Extended Abstract (DA, DD, OR, NSD), pp. 733–742.
STOCSTOC-2015-CousinsV #algorithm
Bypassing KLS: Gaussian Cooling and an O^*(n3) Volume Algorithm (BC, SV), pp. 539–548.
STOCSTOC-2015-GeHK #learning
Learning Mixtures of Gaussians in High Dimensions (RG, QH, SMK), pp. 761–770.
STOCSTOC-2015-HardtP #bound #learning
Tight Bounds for Learning a Mixture of Two Gaussians (MH, EP), pp. 753–760.
ICMLICML-2015-DeisenrothN #distributed #process
Distributed Gaussian Processes (MPD, JWN), pp. 1481–1490.
ICMLICML-2015-FilipponeE #linear #probability #process #scalability
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE) (MF, RE), pp. 1015–1024.
ICMLICML-2015-FlaxmanWNNS #performance #process
Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods (SF, AGW, DN, HN, AJS), pp. 607–616.
ICMLICML-2015-GalCG #category theory #estimation #multi #process
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data (YG, YC, ZG), pp. 645–654.
ICMLICML-2015-GalT #approximate #nondeterminism #process #representation
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs (YG, RT), pp. 655–664.
ICMLICML-2015-GarnettHS #process
Finding Galaxies in the Shadows of Quasars with Gaussian Processes (RG, SH, JS), pp. 1025–1033.
ICMLICML-2015-HoangHL #big data #framework #modelling #probability #process
A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data (TNH, QMH, BKHL), pp. 569–578.
ICMLICML-2015-Kandemir #learning #process #symmetry
Asymmetric Transfer Learning with Deep Gaussian Processes (MK), pp. 730–738.
ICMLICML-2015-LiangP #process
Landmarking Manifolds with Gaussian Processes (DL, JP), pp. 466–474.
ICMLICML-2015-LloydGOR #process
Variational Inference for Gaussian Process Modulated Poisson Processes (CML, TG, MAO, SJR), pp. 1814–1822.
ICMLICML-2015-MacdonaldHH #modelling #process
Controversy in mechanistic modelling with Gaussian processes (BM, CFH, DH), pp. 1539–1547.
ICMLICML-2015-SamoR #parametricity #process #scalability
Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes (YLKS, SR), pp. 2227–2236.
ICMLICML-2015-SuiGBK #optimisation #process
Safe Exploration for Optimization with Gaussian Processes (YS, AG, JWB, AK), pp. 997–1005.
ICMLICML-2015-WilsonN #kernel #process #scalability
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) (AGW, HN), pp. 1775–1784.
ICMLICML-2015-YuanHTLC #modelling
Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (XY, RH, ET, RL, LC), pp. 1254–1263.
KDDKDD-2015-YuanBM #process #re-engineering #using
Gas Concentration Reconstruction for Coal-Fired Boilers Using Gaussian Process (CY, MB, BM), pp. 2247–2256.
RecSysRecSys-2015-Steck #matrix #ranking
Gaussian Ranking by Matrix Factorization (HS), pp. 115–122.
CASECASE-2014-MahlerKLSMKPWFAG #learning #process #using
Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression (JM, SK, ML, SS, AM, BK, SP, JW, MF, PA, KYG), pp. 532–539.
DATEDATE-2014-LangeSJHLS #correlation #modelling #parametricity #probability #standard
Probabilistic standard cell modeling considering non-Gaussian parameters and correlations (AL, CS, RJ, JH, IL, US), pp. 1–4.
ICMLICML-c1-2014-NguyenB #performance #process
Fast Allocation of Gaussian Process Experts (TVN, EVB), pp. 145–153.
ICMLICML-c2-2014-BarberW #difference #equation #estimation #process
Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (DB, YW), pp. 1485–1493.
ICMLICML-c2-2014-BratieresQNG #graph #grid #predict #process #scalability
Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications (SB, NQ, SN, ZG), pp. 334–342.
ICMLICML-c2-2014-ContalPV #optimisation #process
Gaussian Process Optimization with Mutual Information (EC, VP, NV), pp. 253–261.
ICMLICML-c2-2014-GrandeWH #learning #performance #process
Sample Efficient Reinforcement Learning with Gaussian Processes (RCG, TJW, JPH), pp. 1332–1340.
ICMLICML-c2-2014-HoangLJK #learning #process
Nonmyopic ϵ-Bayes-Optimal Active Learning of Gaussian Processes (TNH, BKHL, PJ, MSK), pp. 739–747.
ICMLICML-c2-2014-LiuSD #approximate #modelling #visual notation
Gaussian Approximation of Collective Graphical Models (LPL, DS, TGD), pp. 1602–1610.
ICMLICML-c2-2014-MengEH #learning #modelling #visual notation
Learning Latent Variable Gaussian Graphical Models (ZM, BE, AOHI), pp. 1269–1277.
ICMLICML-c2-2014-ReyRF
Sparse meta-Gaussian information bottleneck (MR, VR, TJF), pp. 910–918.
ICMLICML-c2-2014-RodriguesPR #classification #learning #multi #process
Gaussian Process Classification and Active Learning with Multiple Annotators (FR, FCP, BR), pp. 433–441.
ICMLICML-c2-2014-ToshD #bound
Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians (CT, SD), pp. 1467–1475.
ICPRICPR-2014-ChamroukhiBG #clustering #parametricity
Bayesian Non-parametric Parsimonious Gaussian Mixture for Clustering (FC, MB, HG), pp. 1460–1465.
ICPRICPR-2014-Filippone #classification #process #pseudo
Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC (MF), pp. 614–619.
ICPRICPR-2014-GuerreroR #process
Circular Regression Based on Gaussian Processes (PG, JRdS), pp. 3672–3677.
ICPRICPR-2014-JainCL #image
Local Binary Patterns Calculated over Gaussian Derivative Images (VJ, JLC, AL), pp. 3987–3992.
ICPRICPR-2014-YamashitaTYYF #strict
To Be Bernoulli or to Be Gaussian, for a Restricted Boltzmann Machine (TY, MT, EY, YY, HF), pp. 1520–1525.
KDIRKDIR-2014-BigdeliMRM #clustering #summary
Arbitrary Shape Cluster Summarization with Gaussian Mixture Model (EB, MM, BR, SM), pp. 43–52.
RecSysRecSys-2014-VanchinathanNBK #process #recommendation
Explore-exploit in top-N recommender systems via Gaussian processes (HPV, IN, FDB, AK), pp. 225–232.
SIGIRSIGIR-2014-NguyenKB #process #recommendation
Gaussian process factorization machines for context-aware recommendations (TVN, AK, LB), pp. 63–72.
DACDAC-2013-KuruvillaSPVC #analysis #optimisation #set #statistics
Speeding up computation of the max/min of a set of gaussians for statistical timing analysis and optimization (VK, DS, JP, CV, NC), p. 7.
ICMLICML-c1-2013-GilboaSCG #approximate #multi #process #scalability #using
Scaling Multidimensional Gaussian Processes using Projected Additive Approximations (EG, YS, JPC, EG), pp. 454–461.
ICMLICML-c1-2013-HanL13a #analysis #component
Principal Component Analysis on non-Gaussian Dependent Data (FH, HL), pp. 240–248.
ICMLICML-c1-2013-WongAF #adaptation #modelling #visual notation
Adaptive Sparsity in Gaussian Graphical Models (EW, SPA, PTF), pp. 311–319.
ICMLICML-c2-2013-Lopez-PazHG #dependence #multi #process
Gaussian Process Vine Copulas for Multivariate Dependence (DLP, JMHL, ZG), pp. 10–18.
ICMLICML-c3-2013-KhanAFS #modelling #performance
Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models (MEK, AYA, MPF, MWS), pp. 951–959.
ICMLICML-c3-2013-RossD #constraints #parametricity #process
Nonparametric Mixture of Gaussian Processes with Constraints (JCR, JGD), pp. 1346–1354.
ICMLICML-c3-2013-WilsonA #kernel #process
Gaussian Process Kernels for Pattern Discovery and Extrapolation (AGW, RPA), pp. 1067–1075.
ICMLICML-c3-2013-WytockK #algorithm #energy #random #theory and practice
Sparse Gaussian Conditional Random Fields: Algorithms, Theory, and Application to Energy Forecasting (MW, JZK), pp. 1265–1273.
ICMLICML-c3-2013-YangLZ #learning #matrix #multi
Multi-Task Learning with Gaussian Matrix Generalized Inverse Gaussian Model (MY, YL, ZZ), pp. 423–431.
KDDKDD-2013-LiuYK #adaptation #modelling #process #using
Adaptive collective routing using gaussian process dynamic congestion models (SL, YY, RK), pp. 704–712.
KDDKDD-2013-Vatsavai #approach #learning #multi #using
Gaussian multiple instance learning approach for mapping the slums of the world using very high resolution imagery (RRV), pp. 1419–1426.
CASECASE-2012-AnKP #learning #modelling #process
Grasp motion learning with Gaussian Process Dynamic Models (BA, HK, FCP), pp. 1114–1119.
ICMLICML-2012-BoukouvalasBC #process #using
Gaussian Process Quantile Regression using Expectation Propagation (AB, RB, DC), p. 123.
ICMLICML-2012-ChenCK #optimisation #process
Joint Optimization and Variable Selection of High-dimensional Gaussian Processes (BC, RMC, AK), p. 179.
ICMLICML-2012-DesautelsKB #optimisation #process #trade-off
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization (TD, AK, JWB), p. 109.
ICMLICML-2012-FreitasSZ #bound #exponential #process
Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations (NdF, AJS, MZ), p. 125.
ICMLICML-2012-LiuHYLW #modelling #visual notation
High Dimensional Semiparametric Gaussian Copula Graphical Models (HL, FH, MY, JDL, LAW), p. 225.
ICMLICML-2012-NaimG #algorithm #convergence
Convergence of the EM Algorithm for Gaussian Mixtures with Unbalanced Mixing Coefficients (IN, DG), p. 185.
ICMLICML-2012-ParrishG #reduction
Dimensionality Reduction by Local Discriminative Gaussians (NP, MRG), p. 30.
ICMLICML-2012-WilsonKG #network #process
Gaussian Process Regression Networks (AGW, DAK, ZG), p. 149.
ICPRICPR-2012-AhmedA #gesture #modelling #using
Flow Modeling and skin-based Gaussian pruning to recognize gestural actions using HMM (ORA, AAH), pp. 3488–3491.
ICPRICPR-2012-BoulmerkaA #segmentation #using
Thresholding-based segmentation revisited using mixtures of generalized Gaussian distributions (AB, MSA), pp. 2894–2897.
ICPRICPR-2012-DhallG #estimation #process
Group expression intensity estimation in videos via Gaussian Processes (AD, RG), pp. 3525–3528.
ICPRICPR-2012-FreytagFRD #kernel #performance #process #segmentation #semantics
Efficient semantic segmentation with Gaussian processes and histogram intersection kernels (AF, BF, ER, JD), pp. 3313–3316.
ICPRICPR-2012-HeLL #image #using
Single image super-resolution using Gaussian Mixture Model (HH, JL, XL), pp. 1916–1919.
ICPRICPR-2012-Imajo #algorithm #performance #using
Fast Gaussian filtering algorithm using splines (KI), pp. 489–492.
ICPRICPR-2012-KhanER #detection #image
A Gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images (AMK, HED, NMR), pp. 149–152.
ICPRICPR-2012-LiuBFF
Complex Gaussian Mixture Model for fingerprint minutiae (CL, JB, XF, JF), pp. 545–548.
ICPRICPR-2012-RiveraRC #recognition
Local Gaussian Directional Pattern for face recognition (ARR, JARC, OC), pp. 1000–1003.
ICPRICPR-2012-SchwanderSNB
k-MLE for mixtures of generalized Gaussians (OS, AJS, FN, YB), pp. 2825–2828.
ICPRICPR-2012-SuematsuH #process
Time series alignment with Gaussian processes (NS, AH), pp. 2355–2358.
ICPRICPR-2012-TsuboshitaKFO #adaptation #image #using
Image annotation using adapted Gaussian mixture model (YT, NK, MF, MO), pp. 1346–1350.
KDIRKDIR-2012-DubeyBP #named
BINGR: Binary Search based Gaussian Regression (HD, SB, VP), pp. 258–263.
CAVCAV-2012-HanJ #satisfiability
When Boolean Satisfiability Meets Gaussian Elimination in a Simplex Way (CSH, JHRJ), pp. 410–426.
DATEDATE-2011-LiuHRG #optimisation #process #using
Global optimization of integrated transformers for high frequency microwave circuits using a Gaussian process based surrogate model (BL, YH, PR, GGEG), pp. 1101–1106.
ICDARICDAR-2011-BukhariSB #set #using
Text-Line Extraction Using a Convolution of Isotropic Gaussian Filter with a Set of Line Filters (SSB, FS, TMB), pp. 579–583.
ICDARICDAR-2011-NguyenB #2d #feature model #verification
An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification (VN, MB), pp. 339–343.
HCIDUXU-v2-2011-Hofman #modelling #statistics
Range Statistics and the Exact Modeling of Discrete Non-Gaussian Distributions on Learnability Data (RH), pp. 421–430.
ICMLICML-2011-Lazaro-GredillaT #process
Variational Heteroscedastic Gaussian Process Regression (MLG, MKT), pp. 841–848.
ICMLICML-2011-MarlinKM #bound #modelling
Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models (BMM, MEK, KPM), pp. 633–640.
KDDKDD-2011-HuangLYFCWR #effectiveness #modelling #network
Brain effective connectivity modeling for alzheimer’s disease by sparse gaussian bayesian network (SH, JL, JY, AF, KC, TW, ER), pp. 931–939.
SACSAC-2011-HeinenE #incremental #modelling #using
Incremental feature-based mapping from sonar data using Gaussian mixture models (MRH, PME), pp. 1370–1375.
CASECASE-2010-Tobon-MejiaMZT #markov
A mixture of Gaussians Hidden Markov Model for failure diagnostic and prognostic (DATM, KM, NZ, GT), pp. 338–343.
DACDAC-2010-DhimanMR #modelling #online #predict #using
A system for online power prediction in virtualized environments using Gaussian mixture models (GD, KM, TR), pp. 807–812.
STOCSTOC-2010-KalaiMV #learning
Efficiently learning mixtures of two Gaussians (ATK, AM, GV), pp. 553–562.
ICMLICML-2010-BardenetK #algorithm #optimisation
Surrogating the surrogate: accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm (RB, BK), pp. 55–62.
ICMLICML-2010-HonorioS #learning #modelling #multi #visual notation
Multi-Task Learning of Gaussian Graphical Models (JH, DS), pp. 447–454.
ICMLICML-2010-KimT10a #learning #multi #process
Gaussian Processes Multiple Instance Learning (MK, FDlT), pp. 535–542.
ICMLICML-2010-SaatciTR #modelling #process
Gaussian Process Change Point Models (YS, RDT, CER), pp. 927–934.
ICMLICML-2010-Seeger #scalability
Gaussian Covariance and Scalable Variational Inference (MWS), pp. 967–974.
ICMLICML-2010-SrinivasKKS #design #optimisation #process
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design (NS, AK, SK, MWS), pp. 1015–1022.
ICMLICML-2010-YanQ #process
Sparse Gaussian Process Regression via L1 Penalization (FY, Y(Q), pp. 1183–1190.
ICPRICPR-2010-Allili #retrieval #using
Wavelet-Based Texture Retrieval Using a Mixture of Generalized Gaussian Distributions (MSA), pp. 3143–3146.
ICPRICPR-2010-AriA #estimation #modelling #optimisation #using
Maximum Likelihood Estimation of Gaussian Mixture Models Using Particle Swarm Optimization (CA, SA), pp. 746–749.
ICPRICPR-2010-AsheriRPR #adaptation #fault #framework #kernel #process
A Gaussian Process Regression Framework for Spatial Error Concealment with Adaptive Kernels (HA, HRR, NP, MHR), pp. 4541–4544.
ICPRICPR-2010-CandamoGKG #detection #using
Detecting Wires in Cluttered Urban Scenes Using a Gaussian Model (JC, DBG, RK, SG), pp. 432–435.
ICPRICPR-2010-ChengQHJT #estimation #process #recognition
Group Activity Recognition by Gaussian Processes Estimation (ZC, LQ, QH, SJ, QT), pp. 3228–3231.
ICPRICPR-2010-JunG #classification #process
Nearest-Manifold Classification with Gaussian Processes (GJ, JG), pp. 914–917.
ICPRICPR-2010-Martinez-UsoPS #image #segmentation
A Semi-supervised Gaussian Mixture Model for Image Segmentation (AMU, FP, JMS), pp. 2941–2944.
ICPRICPR-2010-MemonLM #modelling #verification
Information Theoretic Expectation Maximization Based Gaussian Mixture Modeling for Speaker Verification (SM, ML, NCM), pp. 4536–4540.
ICPRICPR-2010-NacereddineTZH10a #algorithm #image #modelling #segmentation #symmetry
Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for Image Segmentation (NN, ST, DZ, LH), pp. 4557–4560.
ICPRICPR-2010-SlimaneKAIH #modelling #recognition
Gaussian Mixture Models for Arabic Font Recognition (FS, SK, AMA, RI, JH), pp. 2174–2177.
ICPRICPR-2010-StadelmannF #recognition
Dimension-Decoupled Gaussian Mixture Model for Short Utterance Speaker Recognition (TS, BF), pp. 1602–1605.
ICPRICPR-2010-SuS #predict #process
Latent Fingerprint Core Point Prediction Based on Gaussian Processes (CS, SNS), pp. 1634–1637.
ICPRICPR-2010-TanakaKO
Progressive MAP-based Deconvolution with Pixel-Dependent Gaussian Prior (MT, TK, MO), pp. 4428–4431.
ICPRICPR-2010-WangJMS #process #using
Decoding Finger Flexion from Electrocorticographic Signals Using a Sparse Gaussian Process (ZW, QJ, KJM, GS), pp. 3756–3759.
ICPRICPR-2010-WangM #learning #order #process #using
Gaussian Process Learning from Order Relationships Using Expectation Propagation (RW, SJM), pp. 605–608.
ICPRICPR-2010-ZhangZZLL #classification #enterprise #kernel
Gaussian ERP Kernel Classifier for Pulse Waveforms Classification (DZ, WZ, DZ, YL, NL), pp. 2736–2739.
ICPRICPR-2010-ZhangZZZ #classification #kernel #metric #using
Time Series Classification Using Support Vector Machine with Gaussian Elastic Metric Kernel (DZ, WZ, DZ, HZ), pp. 29–32.
KDIRKDIR-2010-JunGRO #image #predict #process
Predicting Ground-based Aerosol Optical Depth with Satellite Images Via Gaussian Processes (GJ, JG, VR, ZO), pp. 370–375.
SACSAC-2010-GongWWLZY #using
Recognizing affect from non-stylized body motion using shape of Gaussian descriptors (LG, TW, CW, FL, FZ, XY), pp. 1203–1206.
DACDAC-2009-TakahashiYT #analysis #statistics
A Gaussian mixture model for statistical timing analysis (ST, YY, ST), pp. 110–115.
ICDARICDAR-2009-ChenLJ #estimation #modelling #orthogonal #recognition
Unsupervised Selection and Discriminative Estimation of Orthogonal Gaussian Mixture Models for Handwritten Digit Recognition (XC, XL, YJ), pp. 1151–1155.
ICDARICDAR-2009-DoA #recognition
Maximum Margin Training of Gaussian HMMs for Handwriting Recognition (TMTD, TA), pp. 976–980.
ICDARICDAR-2009-WangH #classification #design #fault #modelling #parametricity #precise #using
Design Compact Recognizers of Handwritten Chinese Characters Using Precision Constrained Gaussian Models, Minimum Classification Error Training and Parameter Compression (YW, QH), pp. 36–40.
ICMLICML-2009-AdamsMM #parametricity #process
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities (RPA, IM, DJCM), pp. 9–16.
ICMLICML-2009-DeisenrothHH #process
Analytic moment-based Gaussian process filtering (MPD, MFH, UDH), pp. 225–232.
ICMLICML-2009-JohnsonCC #representation
Orbit-product representation and correction of Gaussian belief propagation (JKJ, VYC, MC), pp. 473–480.
ICMLICML-2009-LawrenceU #matrix #process
Non-linear matrix factorization with Gaussian processes (NDL, RU), pp. 601–608.
ICMLICML-2009-MarlinM #modelling #visual notation
Sparse Gaussian graphical models with unknown block structure (BMM, KPM), pp. 705–712.
ICMLICML-2009-Schmidt #process #using
Function factorization using warped Gaussian processes (MNS), pp. 921–928.
MLDMMLDM-2009-HasanG #adaptation #classification #modelling
Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier (BASH, JQG), pp. 96–106.
SACSAC-2009-BaechlerBH #image #modelling #using #verification
Labeled images verification using Gaussian mixture models (MB, JLB, JH), pp. 1331–1335.
SACSAC-2009-KontosB #modelling #network #visual notation
An improved shrinkage estimator to infer regulatory networks with Gaussian graphical models (KK, GB), pp. 793–798.
DACDAC-2008-WangLZTYTCN #scheduling
Timing yield driven clock skew scheduling considering non-Gaussian distributions of critical path delays (YW, WSL, XZ, JT, CY, JT, WC, JN), pp. 223–226.
CIKMCIKM-2008-SongZG #classification #framework #performance #process
A sparse gaussian processes classification framework for fast tag suggestions (YS, LZ, CLG), pp. 93–102.
ICMLICML-2008-AdamsS #modelling #parametricity #process
Gaussian process product models for nonparametric nonstationarity (RPA, OS), pp. 1–8.
ICMLICML-2008-CunninghamSS #estimation #performance #process
Fast Gaussian process methods for point process intensity estimation (JPC, KVS, MS), pp. 192–199.
ICMLICML-2008-HyvarinenSH #modelling
Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity (AH, SS, POH), pp. 424–431.
ICMLICML-2008-WalderKS #multi #process
Sparse multiscale gaussian process regression (CW, KIK, BS), pp. 1112–1119.
ICMLICML-2008-ZhangDT #algorithm
Estimating local optimums in EM algorithm over Gaussian mixture model (ZZ, BTD, AKHT), pp. 1240–1247.
ICPRICPR-2008-BruneauGP #approach #modelling #reduction
Parameter-based reduction of Gaussian mixture models with a variational-Bayes approach (PB, MG, FP), pp. 1–4.
ICPRICPR-2008-GaoCY #modelling #process
Manifold denoising with Gaussian Process Latent Variable Models (YG, KLC, WYY), pp. 1–4.
ICPRICPR-2008-HainesW #random #using
Combining shape-from-shading and stereo using Gaussian-Markov random fields (TSFH, RCW), pp. 1–4.
ICPRICPR-2008-HaqueMP #adaptation #detection #generative #multi #robust
Improved Gaussian mixtures for robust object detection by adaptive multi-background generation (MH, MMM, MP), pp. 1–4.
ICPRICPR-2008-LevadaMT #image #markov #modelling #on the #probability #random
On the asymptotic variances of Gaussian Markov Random Field model hyperparameters in stochastic image modeling (ALML, NDAM, AT), pp. 1–4.
ICPRICPR-2008-LiDM #feature model #learning #locality #using
Localized feature selection for Gaussian mixtures using variational learning (YL, MD, YM), pp. 1–4.
ICPRICPR-2008-PiccardiGO #classification #modelling #reduction
Maximum-likelihood dimensionality reduction in gaussian mixture models with an application to object classification (MP, HG, AFO), pp. 1–4.
ICPRICPR-2008-RebecchiJ #on the #string
On the gaussian distribution of strings (SR, JMJ), pp. 1–4.
ICPRICPR-2008-ZhouWS #classification #process #recognition #using
Human motion recognition using Gaussian Processes classification (HZ, LW, DS), pp. 1–4.
SIGIRSIGIR-2008-GuiverS #learning #process #rank
Learning to rank with SoftRank and Gaussian processes (JG, ES), pp. 259–266.
DACDAC-2007-ChengXH #analysis #statistics
Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources (LC, JX, LH), pp. 250–255.
DATEDATE-2007-ZhangOSFKB #analysis #approach #named #parametricity #process
CMCal: an accurate analytical approach for the analysis of process variations with non-gaussian parameters and nonlinear functions (MZ, MO, DS, MF, HK, EB), pp. 243–248.
HCIHCI-MIE-2007-JungKK #estimation #image #modelling #using
Human Pose Estimation Using a Mixture of Gaussians Based Image Modeling (DJJ, KSK, HJK), pp. 649–658.
ICMLICML-2007-KerstingPPB #process
Most likely heteroscedastic Gaussian process regression (KK, CP, PP, WB), pp. 393–400.
ICMLICML-2007-KrauseG #approach #learning #process
Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach (AK, CG), pp. 449–456.
ICMLICML-2007-LawrenceM #modelling #process
Hierarchical Gaussian process latent variable models (NDL, AJM), pp. 481–488.
ICMLICML-2007-UrtasunD #classification #process
Discriminative Gaussian process latent variable model for classification (RU, TD), pp. 927–934.
ICMLICML-2007-WangFH #modelling #multi #process
Multifactor Gaussian process models for style-content separation (JMW, DJF, AH), pp. 975–982.
MLDMMLDM-2007-YuZWZ #3d #image #retrieval
A Filter-Refinement Scheme for 3D Model Retrieval Based on Sorted Extended Gaussian Image Histogram (ZY, SZ, HSW, JZ), pp. 643–652.
DACDAC-2006-SinghS #analysis #component #correlation #independence #parametricity #statistics #using
Statistical timing analysis with correlated non-gaussian parameters using independent component analysis (JS, SSS), pp. 155–160.
DATEDATE-2006-AbbaspourFP #analysis #statistics
Non-gaussian statistical interconnect timing analysis (SA, HF, MP), pp. 533–538.
ICMLICML-2006-BanerjeeGdN #modelling #optimisation #visual notation
Convex optimization techniques for fitting sparse Gaussian graphical models (OB, LEG, Ad, GN), pp. 89–96.
ICMLICML-2006-Carreira-Perpinan #clustering #parametricity #performance
Fast nonparametric clustering with Gaussian blurring mean-shift (MÁCP), pp. 153–160.
ICMLICML-2006-RudaryS #modelling #predict #probability
Predictive linear-Gaussian models of controlled stochastic dynamical systems (MRR, SPS), pp. 777–784.
ICMLICML-2006-SrebroSR #clustering
An investigation of computational and informational limits in Gaussian mixture clustering (NS, GS, STR), pp. 865–872.
ICMLICML-2006-WingateS #kernel #linear #modelling #predict #probability
Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems (DW, SPS), pp. 1017–1024.
ICPRICPR-v1-2006-LiL #probability
Probabilistic Image-Based Rendering with Gaussian Mixture Model (WL, BL), pp. 179–182.
ICPRICPR-v1-2006-LinWZZ #optimisation
Continuous Optimization based-on Boosting Gaussian Mixture Model (BL, XW, RtZ, ZZ), pp. 1192–1195.
ICPRICPR-v2-2006-BenaventRS #algorithm #modelling #named
EBEM: An Entropy-based EM Algorithm for Gaussian Mixture Models (APB, FER, JMS), pp. 451–455.
ICPRICPR-v2-2006-ChenY #modelling #using #video
Exploiting High Dimensional Video Features Using Layered Gaussian Mixture Models (DC, JY), pp. 1078–1081.
ICPRICPR-v2-2006-GrimHSP #approach #modelling #using
A Subspace Approach to Texture Modelling by Using Gaussian Mixtures (JG, MH, PS, PP), pp. 235–238.
ICPRICPR-v2-2006-GuoQ #3d #learning
Learning and Inference of 3D Human Poses from Gaussian Mixture Modeled Silhouettes (FG, GQ), pp. 43–47.
ICPRICPR-v2-2006-IlonenPKK #classification
Gaussian mixture pdf in one-class classification: computing and utilizing confidence values (JI, PP, JKK, HK), pp. 577–580.
ICPRICPR-v2-2006-Lu #evaluation #similarity
Joint Distributions based on DFB and Gaussian Mixtures for Evaluation of Style Similarity among Paintings (XL), pp. 865–868.
ICPRICPR-v3-2006-JiaZHW #classification
Gaussian Weighted Histogram Intersection for License Plate Classification (WJ, HZ, XH, QW), pp. 574–577.
ICPRICPR-v3-2006-ScheundersB #component #image #multi #using
Wavelet denoising of multicomponent images, using a Gaussian Scale Mixture model (PS, SDB), pp. 754–757.
ICPRICPR-v3-2006-SchlapbachB #identification #modelling #using
Off-lineWriter Identification Using Gaussian Mixture Models (AS, HB), pp. 992–995.
ICPRICPR-v4-2006-LeilaC #performance #recognition #speech
Efficient Gaussian Mixture for Speech Recognition (LZ, GC), pp. 294–297.
SACSAC-2006-RouguiRAGM #documentation #modelling #retrieval #scalability #set
Hierarchical organization of a set of Gaussian mixture speaker models for scaling up indexing and retrieval in audio documents (JER, MR, DA, MG, JMM), pp. 1369–1373.
DACDAC-2005-ChangZNV #analysis #parametricity #statistics
Parameterized block-based statistical timing analysis with non-gaussian parameters, nonlinear delay functions (HC, VZ, SN, CV), pp. 71–76.
DACDAC-2005-ZhangCHGC #analysis #polynomial #statistics
Correlation-preserved non-gaussian statistical timing analysis with quadratic timing model (LZ, WC, YH, JAG, CCPC), pp. 83–88.
DACDAC-2005-ZhanSLPNS #analysis #statistics
Correlation-aware statistical timing analysis with non-gaussian delay distributions (YZ, AJS, XL, LTP, DN, MS), pp. 77–82.
DATEDATE-2005-BalakrishnanT #configuration management #linear #using
Reconfigurable Linear Decompressors Using Symbolic Gaussian Elimination (KJB, NAT), pp. 1130–1135.
ICMLICML-2005-ChuG #learning #process
Preference learning with Gaussian processes (WC, ZG), pp. 137–144.
ICMLICML-2005-EngelMM #learning #process
Reinforcement learning with Gaussian processes (YE, SM, RM), pp. 201–208.
ICMLICML-2005-GuestrinKS #process
Near-optimal sensor placements in Gaussian processes (CG, AK, APS), pp. 265–272.
ICMLICML-2005-LeSC #process
Heteroscedastic Gaussian process regression (QVL, AJS, SC), pp. 489–496.
ICMLICML-2005-YuTS #learning #multi #process
Learning Gaussian processes from multiple tasks (KY, VT, AS), pp. 1012–1019.
ICMLICML-2004-AltunHS #classification #process #sequence
Gaussian process classification for segmenting and annotating sequences (YA, TH, AJS).
ICMLICML-2004-GramacyLM #parametricity #process
Parameter space exploration with Gaussian process trees (RBG, HKHL, WGM).
ICPRICPR-v1-2004-ColemanSH #design #scalability
A Systematic Design Procedure for Scalable Near-Circular Laplacian of Gaussian Operators (SAC, BWS, MGH), pp. 700–703.
ICPRICPR-v2-2004-MaD #adaptation #classification #using #word
Adaptive Word Style Classification Using a Gaussian Mixture Model (HM, DSD), pp. 606–609.
ICPRICPR-v2-2004-Zivkovic #adaptation
Improved Adaptive Gaussian Mixture Model for Background Subtraction (ZZ), pp. 28–31.
ICPRICPR-v3-2004-BoughorbelKAA #energy
Gaussian Energy Functions for Registration without Correspondences (FB, AK, BRA, MAA), pp. 24–27.
ICPRICPR-v3-2004-GimelfarbFE #linear
Expectation-Maximization for a Linear Combination of Gaussians (GLG, AAF, AEB), pp. 422–425.
ICPRICPR-v3-2004-HaindlGSPK
A Gaussian Mixture-Based Colour Texture Model (MH, JG, PS, PP, MK), pp. 177–180.
ICPRICPR-v3-2004-MoW #modelling #segmentation #using #video
Video Modelling and Segmentation Using Gaussian Mixture Models (XM, RW), pp. 854–857.
ICPRICPR-v4-2004-OrtizMG #image
Gaussian Noise Elimination in Colour Images by Vector-Connected Filters (FO, FTM, PG), pp. 807–810.
ICPRICPR-v4-2004-SinghMB #robust
Robust KLT Tracking with Gaussian and Laplacian of Gaussian Weighting Functions (MS, MKM, AB), pp. 661–664.
ICPRICPR-v4-2004-WangT #modelling #recognition
Bayesian Face Recognition Based on Gaussian Mixture Models (XW, XT), pp. 142–145.
ICDARICDAR-2003-GunterB #optimisation #word
Optimizing the Number of States, Training Iterations and Gaussians in an HMM-based Handwritten Word Recognizer (SG, HB), pp. 472–476.
ICEISICEIS-v2-2003-TolbaMGA #algorithm #analysis #image #multi #segmentation #using
MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm (MFT, MGM, TFG, MAMS), pp. 165–170.
ICMLICML-2003-EngelMM #approach #difference #learning #process
Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning (YE, SM, RM), pp. 154–161.
ICMLICML-2003-Graepel #difference #equation #linear #process
Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations (TG), pp. 234–241.
ICMLICML-2003-KlautauJO #classification #comparison #kernel #modelling
Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers (AK, NJ, AO), pp. 353–360.
ICMLICML-2003-ZhuGL #learning #using
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (XZ, ZG, JDL), pp. 912–919.
SIGIRSIGIR-2003-Hofmann #analysis #collaboration #probability #semantics
Collaborative filtering via gaussian probabilistic latent semantic analysis (TH), pp. 259–266.
VMCAIVMCAI-2003-Monniaux #abstraction #using
Abstraction of Expectation Functions Using Gaussian Distributions (DM), pp. 161–173.
ICPRICPR-v2-2002-ChangHHC #detection #effectiveness #modelling
Shadow Elimination for Effective Moving Object Detection with Gaussian Models (CJC, WFH, JWH, YSC), pp. 540–543.
ICPRICPR-v2-2002-GibsonCT #abstraction #modelling #using #visual notation
Visual Abstraction of Wildlife Footage Using Gaussian Mixture Models and the Minimum Description Length Criterion (DPG, NWC, BTT), pp. 814–817.
ICPRICPR-v2-2002-MinagawaUT
Region Extraction Based on Belief Propagation for Gaussian Model (AM, KU, NT), pp. 507–510.
ICPRICPR-v2-2002-Vaswani #classification #linear #matrix
A Linear Classifier for Gaussian Class Conditional Distributions with Unequal Covariance Matrices (NV), pp. 60–63.
ICPRICPR-v2-2002-WildenauerMB #approach
A Gradient-Based Eigenspace Approach to Dealing with Occlusions and Non-Gaussian Noise (HW, TM, HB), pp. 977–980.
ICDARICDAR-2001-ZhangDZ #orthogonal #recognition
Offline Handwritten Character Recognition Based on Discriminative Training of Orthogonal Gaussian Mixture Model (RZ, XD, JZ), pp. 221–225.
STOCSTOC-2001-SanjeevK #learning
Learning mixtures of arbitrary gaussians (SA, RK), pp. 247–257.
ICPRICPR-v1-2000-GrossYW #invariant #modelling #recognition
Growing Gaussian Mixture Models for Pose Invariant Face Recognition (RG, JY, AW), pp. 5088–5091.
ICPRICPR-v1-2000-Wilson #modelling #multi #named
MGMM: Multiresolution Gaussian Mixture Models for Computer Vision (RW), pp. 1212–1215.
ICPRICPR-v2-2000-Figueiredo #approximate #learning #on the
On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies (MATF), pp. 2618–2621.
ICPRICPR-v2-2000-Sanchez-Reillo #geometry #modelling #pattern matching #pattern recognition #recognition
Hand Geometry Pattern Recognition through Gaussian Mixture Modeling (RSR), pp. 2937–2940.
ICPRICPR-v3-2000-FukuiIIW #analysis #component #using
Sign of Gaussian Curvature from Eigen Plane Using Principal Components Analysis (SF, YI, AI, RJW), pp. 3807–3810.
ICPRICPR-v3-2000-PelecanosMSC #modelling #verification
Vector Quantization Based Gaussian Modeling for Speaker Verification (JWP, SM, SS, VC), pp. 3298–3301.
ICPRICPR-v3-2000-Silvan-CardenasE #information management
Optic-Flow Information Extraction with Directional Gaussian-Derivatives (JLSC, BER), pp. 3194–3197.
ICPRICPR-1998-SardoK #complexity #estimation #using #validation
Model complexity validation for PDF estimation using Gaussian mixtures (LS, JK), pp. 195–197.
ICPRICPR-1998-VlietYV #recursion
Recursive Gaussian derivative filters (LJvV, ITY, PWV), pp. 509–514.
DACDAC-1997-NaborsFCK #modelling
Lumped Interconnect Models Via Gaussian Quadrature (KN, TTF, HWC, KSK), pp. 40–45.
ICDARICDAR-1997-FrankeGKM #classification #comparison #markov #modelling #polynomial #recognition
A Comparison of Gaussian Distribution and Polynomial Classifiers in a Hidden Markov Model Based System for the Recognition of Cursive Script (JF, JMG, AK, EM), pp. 515–518.
ICPRICPR-1996-IdoATS #segmentation
Stimulus-driven segmentation by Gaussian functions (SI, SA, RT, MS), pp. 487–491.
ICPRICPR-1996-JacksonA
Elliptical Gaussian filters (SAJ, NA), pp. 775–779.
ICPRICPR-1996-Zhao0C #image #segmentation
Simplified Gaussian and mean curvatures to range image segmentation (CZ, DZ, YC), pp. 427–431.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.