Travelled to:
1 × China
1 × Ireland
1 × Spain
1 × Switzerland
18 × USA
2 × Canada
Collaborated with:
J.A.Konstan M.D.Ekstrand D.Cosley D.Frankowski L.G.Terveen J.L.Herlocker J.Chen M.Ludwig B.N.Miller Y.Ren M.Stein V.Mashayekhi S.Sen ∅ S.K.Lam A.M.Rashid A.Borchers P.Resnick T.T.Nguyen D.Kluver A.K.Agrahri D.A.T.Manickam J.B.Schafer M.P.E.Heimdahl C.Feulner F.M.Harper I.Albert S.M.McNee J.A.Stemper J.T.Butler L.S.Wang J.Kolb S.J.Harner K.B.Shores Y.He K.L.Swanenburg R.Kraut S.Drenner S.B.Kiesler N.Iacovou M.Suchak P.Bergstrom E.Shoop J.Srivastava P.Bieganski E.Retzel R.Torres M.Abel J.J.Levandoski A.Eldawy M.F.Mokbel P.Kannan K.S.Ling R.D.Tassone R.E.Kraut B.M.Sarwar T.Wang P.Hui M.C.Willemsen N.Kapoor G.C.Fouty J.Osterhouse P.Gopalkrishnan
Talks about:
recommend (12) collabor (7) system (7) filter (6) research (5) group (5) len (5) communiti (4) improv (4) softwar (3)
Person: John Riedl
DBLP: Riedl:John
Facilitated 2 volumes:
Contributed to:
Wrote 32 papers:
- CSCW-2014-ShoresHSKR #game studies #identification #multi
- The identification of deviance and its impact on retention in a multiplayer game (KBS, YH, KLS, RK, JR), pp. 1356–1365.
- RecSys-2013-NguyenKWHEWR #experience #rating #recommendation #user interface
- Rating support interfaces to improve user experience and recommender accuracy (TTN, DK, TYW, PMH, MDE, MCW, JR), pp. 149–156.
- CSCW-2012-WangCRR #online #trade-off #volunteer
- Searching for the goldilocks zone: trade-offs in managing online volunteer groups (LSW, JC, YR, JR), pp. 989–998.
- RecSys-2012-EkstrandR #algorithm #predict #recommendation
- When recommenders fail: predicting recommender failure for algorithm selection and combination (MDE, JR), pp. 233–236.
- RecSys-2012-KluverNESR #how #question #rating
- How many bits per rating? (DK, TTN, MDE, SS, JR), pp. 99–106.
- RecSys-2011-EkstrandLKR #ecosystem #recommendation #research
- Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit (MDE, ML, JAK, JR), pp. 133–140.
- RecSys-2011-EkstrandLKR11a #composition #framework #named #recommendation
- LensKit: a modular recommender framework (MDE, ML, JK, JR), pp. 349–350.
- VLDB-2011-LevandoskiELEMR #architecture #benchmark #metric #named #performance #recommendation
- RecBench: Benchmarks for Evaluating Performance of Recommender System Architectures (JJL, MDE, ML, AE, MFM, JR), pp. 911–920.
- CHI-2010-ChenRR #online #volunteer
- The effects of diversity on group productivity and member withdrawal in online volunteer groups (JC, YR, JR), pp. 821–830.
- RecSys-2010-EkstrandKSBKR #automation #research
- Automatically building research reading lists (MDE, PK, JAS, JTB, JAK, JR), pp. 159–166.
- RecSys-2008-AgrahriMR #people #question
- Can people collaborate to improve the relevance of search results? (AKA, DATM, JR), pp. 283–286.
- RecSys-2007-KapoorCBFSRK #named #research
- Techlens: a researcher’s desktop (NK, JC, JTB, GCF, JAS, JR, JAK), pp. 183–184.
- CHI-2006-CosleyFTR #community #overview #using
- Using intelligent task routing and contribution review to help communities build artifacts of lasting value (DC, DF, LGT, JR), pp. 1037–1046.
- CHI-2006-DrennerHFRT #web
- Insert movie reference here: a system to bridge conversation and item-oriented web sites (SD, FMH, DF, JR, LGT), pp. 951–954.
- CHI-2006-RashidLTRKR #game studies
- Motivating participation by displaying the value of contribution (AMR, KSL, RDT, PR, REK, JR), pp. 955–958.
- CSCW-2006-SenLRCFOHR #community #evolution
- tagging, communities, vocabulary, evolution (SS, SKL, AMR, DC, DF, JO, FMH, JR), pp. 181–190.
- SIGIR-2006-FrankowskiCSTR #privacy #risk management #what
- You are what you say: privacy risks of public mentions (DF, DC, SS, LGT, JR), pp. 565–572.
- CHI-2005-CosleyFKTR #community #how
- How oversight improves member-maintained communities (DC, DF, SBK, LGT, JR), pp. 11–20.
- CHI-2003-CosleyLAKR #how #interface #recommendation
- Is seeing believing?: how recommender system interfaces affect users’ opinions (DC, SKL, IA, JAK, JR), pp. 585–592.
- CIKM-2002-SchaferKR #integration #recommendation
- Meta-recommendation systems: user-controlled integration of diverse recommendations (JBS, JAK, JR), pp. 43–51.
- CSCW-2002-McNeeACGLRKR #on the #recommendation #research
- On the recommending of citations for research papers (SMM, IA, DC, PG, SKL, AMR, JAK, JR), pp. 116–125.
- KDD-2001-Riedl #community #recommendation
- Recommender systems in commerce and community (JR), p. 15.
- CSCW-2000-HerlockerKR #collaboration #recommendation
- Explaining collaborative filtering recommendations (JLH, JAK, JR), pp. 241–250.
- ASE-1999-SteinHR
- Enhancing Annotation Visibility for Software Inspection (MS, MPEH, JR), pp. 243–246.
- SIGIR-1999-HerlockerKBR #algorithm #collaboration #framework
- An Algorithmic Framework for Performing Collaborative Filtering (JLH, JAK, AB, JR), pp. 230–237.
- CSCW-1998-SarwarKBHMR #collaboration #predict #quality #research #using
- Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System (BMS, JAK, AB, JLH, BNM, JR), pp. 345–354.
- ICSE-1997-SteinRHM #case study #distributed
- A Case Study of Distributed, Asynchronous Software Inspection (MS, JR, SJH, VM), pp. 107–117.
- CSCW-1996-MillerR #collaboration
- A Hands-On Introduction to Collaborative Filtering (BNM, JR), p. 5.
- CSCW-1994-ResnickISBR #architecture #collaboration #named
- GroupLens: An Open Architecture for Collaborative Filtering of Netnews (PR, NI, MS, PB, JR), pp. 175–186.
- FSE-1994-MashayekhiFR #collaboration #named
- CAIS: Collaborative Asynchronous Inspection of Software (VM, CF, JR), pp. 21–34.
- SAC-1993-ShoopSBRR #information management #object-oriented
- An Object-Oriented Genetics Information System (ES, JS, PB, JR, ER), pp. 641–651.
- JCDL-2004-TorresMAKR #library
- Enhancing digital libraries with TechLens+ (RT, SMM, MA, JAK, JR), pp. 228–236.