Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, Rajeev Rastogi
Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
KDD, 2016.

KER
DBLP
Scholar
DOI
Full names Links ISxN
@proceedings{KDD-2016,
	doi           = "10.1145/2939672",
	editor        = "Balaji Krishnapuram and Mohak Shah and Alexander J. Smola and Charu C. Aggarwal and Dou Shen and Rajeev Rastogi",
	isbn          = "978-1-4503-4232-2",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining}",
	year          = 2016,
}

Contents (236 items)

KDD-2016-Chayes #estimation #machine learning #modelling #network
Graphons and Machine Learning: Modeling and Estimation of Sparse Massive Networks (JTC), p. 1.
KDD-2016-Freitas #composition #learning #network
Learning to Learn and Compositionality with Deep Recurrent Neural Networks: Learning to Learn and Compositionality (NdF), p. 3.
KDD-2016-Diffie #evolution #security
The Evolving Meaning of Information Security (WD), p. 5.
KDD-2016-Hellerstein #people
People, Computers, and The Hot Mess of Real Data (JMH), p. 7.
KDD-2016-Papadopoulos #ml
A VC View of Investing in ML (GP), p. 9.
KDD-2016-SimoudisGGOS #big data #lessons learnt
Big Data Needs Big Dreamers: Lessons from Successful Big Data Investors (ES, MG, TG, MO, GS), pp. 11–12.
KDD-2016-AckermannRHKBKG #design #policy #recommendation
Designing Policy Recommendations to Reduce Home Abandonment in Mexico (KA, EBR, SH, TAK, PvdB, RK, RG, JCG), pp. 13–20.
KDD-2016-AyhanS #predict
Aircraft Trajectory Prediction Made Easy with Predictive Analytics (SA, HS), pp. 21–30.
KDD-2016-ZadehMUYPVSSZ #matrix #optimisation
Matrix Computations and Optimization in Apache Spark (RBZ, XM, AU, BY, LP, SV, ERS, AS, MZ), pp. 31–38.
KDD-2016-BotezatuGBW #predict #reliability #towards
Predicting Disk Replacement towards Reliable Data Centers (MMB, IG, JB, DW), pp. 39–48.
KDD-2016-BrooksKG #data-driven #predict #ranking #using
Developing a Data-Driven Player Ranking in Soccer Using Predictive Model Weights (JB, MK, JVG), pp. 49–55.
KDD-2016-BurgessGKWWHG #detection #reuse
The Legislative Influence Detector: Finding Text Reuse in State Legislation (MB, EG, JKS, JW, DW, LH, RG), pp. 57–66.
KDD-2016-CartonHJMPWCPHG #identification
Identifying Police Officers at Risk of Adverse Events (SC, JH, KJ, AM, YP, JW, CC, CPTEP, LH, RG), pp. 67–76.
KDD-2016-DengS #data-driven #development #lessons learnt #metric #online
Data-Driven Metric Development for Online Controlled Experiments: Seven Lessons Learned (AD, XS), pp. 77–86.
KDD-2016-DuLZHX #detection #scalability
Catch Me If You Can: Detecting Pickpocket Suspects from Large-Scale Transit Records (BD, CL, WZ, ZH, HX), pp. 87–96.
KDD-2016-GuptaLTVCR #email #optimisation
Email Volume Optimization at LinkedIn (RG, GL, HPT, RKHV, XC, RR), pp. 97–106.
KDD-2016-HaPK #categorisation #e-commerce #multi #network #scalability #using
Large-Scale Item Categorization in e-Commerce Using Multiple Recurrent Neural Networks (JH, HP, JK), pp. 107–115.
KDD-2016-HuangJA #composition #distributed #online #performance
Online Dual Decomposition for Performance and Delivery-Based Distributed Ad Allocation (JCH, RJ, CA), pp. 117–126.
KDD-2016-JinCYQGYYZ #collaboration
Minimizing Legal Exposure of High-Tech Companies through Collaborative Filtering Methods (BJ0, CC, KY, YQ, LG0, CY, RY, QZ0), pp. 127–136.
KDD-2016-KapurLCAP #ranking
Ranking Universities Based on Career Outcomes of Graduates (NK, NIL, BCC, DA, IP), pp. 137–144.
KDD-2016-KhanB #behaviour #modelling #predict
Predictors without Borders: Behavioral Modeling of Product Adoption in Three Developing Countries (MRK, JEB), pp. 145–154.
KDD-2016-LiuNZZYCWZC #e-commerce #predict
Repeat Buyer Prediction for E-Commerce (GL, TTN, GZ, WZ, JY, JC, MW0, PZ, WC), pp. 155–164.
KDD-2016-LiuPLTCL #network #online #social
Audience Expansion for Online Social Network Advertising (HL, DP, KL, MT, FC, CL), pp. 165–174.
KDD-2016-LuoYLSYH #behaviour #online
From Online Behaviors to Offline Retailing (PL0, SY, ZL, ZS, SY, QH), pp. 175–184.
KDD-2016-MadaioCHZCHCD #named #predict
Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta (MAM, STC, OLH, WZ, XC0, MHA, DHC, BD), pp. 185–194.
KDD-2016-MalmiTTRG #approach #generative #named
DopeLearning: A Computational Approach to Rap Lyrics Generation (EM, PT, HT, TR, AG), pp. 195–204.
KDD-2016-MuthiahBKSSRZCL #case study #experience #open source
EMBERS at 4 years: Experiences operating an Open Source Indicators Forecasting System (SM, PB, RPK, PS, NS, AR, LZ0, JC, CTL, AV, AM, KMS, GK, AD, JA, DKG, DM, NR), pp. 205–214.
KDD-2016-NandiMADB #control flow #detection #execution #graph #mining #using
Anomaly Detection Using Program Control Flow Graph Mining From Execution Logs (AN, AM, SA, GBD, SB), pp. 215–224.
KDD-2016-NikolaevGG #capacity #online #platform #social #social media
Engagement Capacity and Engaging Team Formation for Reach Maximization of Online Social Media Platforms (AGN, SG, VG), pp. 225–234.
KDD-2016-PoyarkovDKGS #online #reduction
Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (AP, AD, AK, GG, PS), pp. 235–244.
KDD-2016-SalehiRLP #approach #predict #risk management #robust
Dynamic and Robust Wildfire Risk Prediction System: An Unsupervised Approach (MS, LIR, TML, AP), pp. 245–254.
KDD-2016-ShanHJWYM #combinator #modelling
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features (YS, TRH, JJ, HW, DY, JCM), pp. 255–262.
KDD-2016-SinghSA #independence #machine learning #using
Question Independent Grading using Machine Learning: The Case of Computer Program Grading (GS, SS, VA), pp. 263–272.
KDD-2016-SunYWXMZ
Contextual Intent Tracking for Personal Assistants (YS0, NJY, YW, XX0, KM, RZ0), pp. 273–282.
KDD-2016-TangLCA #empirical #feedback #multi #recommendation
An Empirical Study on Recommendation with Multiple Types of Feedback (LT, BL, BCC, DA), pp. 283–292.
KDD-2016-VanderveldPHP #e-commerce
An Engagement-Based Customer Lifetime Value System for E-commerce (AV, AP, AH, RP), pp. 293–302.
KDD-2016-WulczynKVHWBG #identification
Identifying Earmarks in Congressional Bills (EW, MK, VV, MH, JW, CB, RG), pp. 303–311.
KDD-2016-XuC #mobile #testing
Evaluating Mobile Apps with A/B and Quasi A/B Tests (YX, NC), pp. 313–322.
KDD-2016-YinHTDZOCKDNLC #ranking
Ranking Relevance in Yahoo Search (DY, YH, JT, TDJ, MZ, HO, JC, CK, HD, CN, JML, YC), pp. 323–332.
KDD-2016-YuCG #identification #network #social
Identifying Decision Makers from Professional Social Networks (SY, EC, AG), pp. 333–342.
KDD-2016-YueYCHZ #data analysis
Batch Model for Batched Timestamps Data Analysis with Application to the SSA Disability Program (QY, AY, XC, MH, CZ), pp. 343–352.
KDD-2016-ZhangYLXM #collaboration #knowledge base #recommendation
Collaborative Knowledge Base Embedding for Recommender Systems (FZ, NJY, DL, XX0, WYM), pp. 353–362.
KDD-2016-ZhangZMCZA #linear #modelling #named #predict #scalability
GLMix: Generalized Linear Mixed Models For Large-Scale Response Prediction (XZ, YZ, YM, BCC, LZ, DA), pp. 363–372.
KDD-2016-ZhaoATBDBKD #approach #detection #parametricity #strict #using
A Non-parametric Approach to Detect Epileptogenic Lesions using Restricted Boltzmann Machines (YZ, BA, TT, KEB, JGD, CEB, RK, OD), pp. 373–382.
KDD-2016-ZhuZXDX #analysis #modelling
Recruitment Market Trend Analysis with Sequential Latent Variable Models (CZ, HZ, HX, PD, FX), pp. 383–392.
KDD-2016-ZhuXTLGCF
Days on Market: Measuring Liquidity in Real Estate Markets (HZ, HX, FT, QL0, YG, EC, YF), pp. 393–402.
KDD-2016-Becher #education
Can You Teach the Elephant to Dance? AKA: Culture Eats Data Science for Breakfast (JDB), p. 403.
KDD-2016-Downs #how #machine learning
How Machine Learning has Finally Solved Wanamaker's Dilemma (OD), p. 405.
KDD-2016-Herbrich #learning #modelling #scalability
Learning Sparse Models at Scale (RH), p. 407.
KDD-2016-Law #behaviour #online #profiling #social
Profiling Users from Online Social Behaviors with Applications for Tencent Social Ads (CL), p. 409.
KDD-2016-Mierswa #machine learning #workflow
The Wisdom of Crowds: Best Practices for Data Prep & Machine Learning Derived from Millions of Data Science Workflows (IM), p. 411.
KDD-2016-Schneider #embedded #learning #optimisation
Bayesian Optimization and Embedded Learning Systems (JS), p. 413.
KDD-2016-Shapiro
Accelerating the Race to Autonomous Cars (DS), p. 415.
KDD-2016-Srivastava #machine learning #scalability #theory and practice
Large-Scale Machine Learning at Verizon: Theory and Applications (AS), p. 417.
KDD-2016-Watts #challenge #social
Computational Social Science: Exciting Progress and Future Challenges (DW), p. 419.
KDD-2016-AnCPS #approach #named
MAP: Frequency-Based Maximization of Airline Profits based on an Ensemble Forecasting Approach (BA, HC0, NP, VSS), pp. 421–430.
KDD-2016-BatraSW #energy #named
Gemello: Creating a Detailed Energy Breakdown from Just the Monthly Electricity Bill (NB0, AS0, KW), pp. 431–440.
KDD-2016-BorisyukKSZ #documentation #framework #learning #modelling #named #query
CaSMoS: A Framework for Learning Candidate Selection Models over Structured Queries and Documents (FB, KK, DS, BZ), pp. 441–450.
KDD-2016-ChidlovskiiCC #adaptation
Domain Adaptation in the Absence of Source Domain Data (BC, SC, GC), pp. 451–460.
KDD-2016-DingFC #assembly #named #reverse engineering
Kam1n0: MapReduce-based Assembly Clone Search for Reverse Engineering (SHHD, BCMF, PC), pp. 461–470.
KDD-2016-GeyikFSOK #metric #multi #online #optimisation #performance #video
Joint Optimization of Multiple Performance Metrics in Online Video Advertising (SCG, SF, JS, SO, SK), pp. 471–480.
KDD-2016-GuoLI #approximate #network
Convolutional Neural Networks for Steady Flow Approximation (XG, WL, FI), pp. 481–490.
KDD-2016-KuangTCPSP #self #using
Computational Drug Repositioning Using Continuous Self-Controlled Case Series (ZK, JAT, MC, PLP, RMS, DP), pp. 491–500.
KDD-2016-LiAHS #how #personalisation #ranking
How to Get Them a Dream Job?: Entity-Aware Features for Personalized Job Search Ranking (JL, DA, VHT, SS), pp. 501–510.
KDD-2016-LiMLFDYLQ #big data #data analysis #learning #performance #scalability #taxonomy
Scalable Fast Rank-1 Dictionary Learning for fMRI Big Data Analysis (XL0, MM, BL, MSF, ID, JY, TL, SQ), pp. 511–519.
KDD-2016-LiuJM #industrial #named #normalisation #online
CompanyDepot: Employer Name Normalization in the Online Recruitment Industry (QL, FJ, MM), pp. 521–530.
KDD-2016-LoFL #behaviour #case study #comprehension
Understanding Behaviors that Lead to Purchasing: A Case Study of Pinterest (CL, DF, JL), pp. 531–540.
KDD-2016-LynchAA #image #learning #multimodal #rank #scalability #semantics #visual notation
Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank (CL, KA, JA), pp. 541–548.
KDD-2016-NguyenP #mining
Text Mining in Clinical Domain: Dealing with Noise (HN, JP), pp. 549–558.
KDD-2016-PaparrizosWH #detection
Detecting Devastating Diseases in Search Logs (JP, RWW, EH), pp. 559–568.
KDD-2016-PerozziSST #network #recommendation
When Recommendation Goes Wrong: Anomalous Link Discovery in Recommendation Networks (BP, MS, JS, MT), pp. 569–578.
KDD-2016-PivarskiBG
Deploying Analytics with the Portable Format for Analytics (PFA) (JP, CB, RLG), pp. 579–588.
KDD-2016-PoonawalaKBWS #data analysis #mobile
Singapore in Motion: Insights on Public Transport Service Level Through Farecard and Mobile Data Analytics (HP, VK, SB, LW, SS), pp. 589–598.
KDD-2016-SarafR #automation
EMBERS AutoGSR: Automated Coding of Civil Unrest Events (PS, NR), pp. 599–608.
KDD-2016-TaghaviLK #machine learning #memory management #recommendation #using
Compute Job Memory Recommender System Using Machine Learning (TT, ML, YK), pp. 609–616.
KDD-2016-TanFLWLLPXH #adaptation #algorithm #predict #scalability
Scalable Time-Decaying Adaptive Prediction Algorithm (YT, ZF, GL, FW, ZL, SL, QP, EPX, QH), pp. 617–626.
KDD-2016-HaarenSDF #machine learning #using
Analyzing Volleyball Match Data from the 2014 World Championships Using Machine Learning Techniques (JVH, HBS, JD, PF), pp. 627–634.
KDD-2016-WangKGL #big data
Crime Rate Inference with Big Data (HW0, DK, CG, ZL), pp. 635–644.
KDD-2016-XieA #case study #online
Improving the Sensitivity of Online Controlled Experiments: Case Studies at Netflix (HX, JA), pp. 645–654.
KDD-2016-XuYYXZ #detection #network
Talent Circle Detection in Job Transition Networks (HX, ZY0, JY, HX, HZ), pp. 655–664.
KDD-2016-ZhangZWX #learning
Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising (WZ0, TZ, JW0, JX), pp. 665–674.
KDD-2016-AkibaY #graph #scalability #sketching
Compact and Scalable Graph Neighborhood Sketching (TA, YY), pp. 685–694.
KDD-2016-AmoualianCGA #approach #dependence #documentation #modelling #named #topic
Streaming-LDA: A Copula-based Approach to Modeling Topic Dependencies in Document Streams (HA, MC, ÉG, MRA), pp. 695–704.
KDD-2016-AndersonKM #benchmark #fault #metric
Assessing Human Error Against a Benchmark of Perfection (AA, JMK, SM), pp. 705–714.
KDD-2016-ArbourGJ #network
Inferring Network Effects from Observational Data (DTA, DG, DDJ), pp. 715–724.
KDD-2016-BalcanLSW0 #analysis #communication #component #distributed #kernel #performance
Communication Efficient Distributed Kernel Principal Component Analysis (MFB, YL, LS, DPW, BX0), pp. 725–734.
KDD-2016-BertensVS #multi #sequence
Keeping it Short and Simple: Summarising Complex Event Sequences with Multivariate Patterns (RB, JV, AS), pp. 735–744.
KDD-2016-Bressan0PRT #recommendation #social
The Limits of Popularity-Based Recommendations, and the Role of Social Ties (MB0, SL0, AP, PR, ET), pp. 745–754.
KDD-2016-ChangZTYCHH #learning #network #streaming
Positive-Unlabeled Learning in Streaming Networks (SC, YZ0, JT, DY, YC, MAHJ, TSH), pp. 755–764.
KDD-2016-ChenTXYH #dependence #multi #named #network #performance
FASCINATE: Fast Cross-Layer Dependency Inference on Multi-layered Networks (CC0, HT, LX, LY, QH), pp. 765–774.
KDD-2016-ChenJ #predict
Predicting Matchups and Preferences in Context (SC0, TJ), pp. 775–784.
KDD-2016-ChenG #named #scalability
XGBoost: A Scalable Tree Boosting System (TC, CG), pp. 785–794.
KDD-2016-ChenLTZZ #robust
Robust Influence Maximization (WC, TL, ZT, MZ, XZ), pp. 795–804.
KDD-2016-ChengZCJCW #analysis #correlation #ranking
Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations (WC, KZ0, HC, GJ, ZC, WW0), pp. 805–814.
KDD-2016-Christakopoulou #recommendation #towards
Towards Conversational Recommender Systems (KC, FR, KH), pp. 815–824.
KDD-2016-StefaniERU #memory management #named
TRIÈST: Counting Local and Global Triangles in Fully-Dynamic Streams with Fixed Memory Size (LDS, AE, MR, EU), pp. 825–834.
KDD-2016-FowkesS #mining #sequence
A Subsequence Interleaving Model for Sequential Pattern Mining (JMF, CAS), pp. 835–844.
KDD-2016-GhashamiLP #algorithm #matrix #performance
Efficient Frequent Directions Algorithm for Sparse Matrices (MG, EL, JMP), pp. 845–854.
KDD-2016-GroverL #learning #named #network #scalability
node2vec: Scalable Feature Learning for Networks (AG, JL), pp. 855–864.
KDD-2016-HanZWZ #identification #interactive
Generalized Hierarchical Sparse Model for Arbitrary-Order Interactive Antigenic Sites Identification in Flu Virus Data (LH0, YZ0, XFW, TZ0), pp. 865–874.
KDD-2016-HeLMCSY #community #composition #detection
Joint Community and Structural Hole Spanner Detection via Harmonic Modularity (LH0, CTL, JM, JC, LS, PSY), pp. 875–884.
KDD-2016-HeK #robust
Robust Influence Maximization (XH, DK0), pp. 885–894.
KDD-2016-HooiSBSSF #bound #graph #named
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage (BH, HAS, AB, NS, KS, CF), pp. 895–904.
KDD-2016-HuVQ #detection #performance
Temporal Order-based First-Take-All Hashing for Fast Attention-Deficit-Hyperactive-Disorder Detection (HH, JVG, GJQ), pp. 905–914.
KDD-2016-HungSYHLPC #social
When Social Influence Meets Item Inference (HJH, HHS, DNY, LHH, WCL, JP, MSC), pp. 915–924.
KDD-2016-IyerNS #estimation #privacy
Privacy-preserving Class Ratio Estimation (ASI, JSN, SS), pp. 925–934.
KDD-2016-JainPV #multi #ranking #recommendation
Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications (HJ, YP, MV), pp. 935–944.
KDD-2016-JiangFH #behaviour #multi #named #representation
CatchTartan: Representing and Summarizing Dynamic Multicontextual Behaviors (MJ0, CF, JH0), pp. 945–954.
KDD-2016-KannanKRKTMCLGY #automation #email
Smart Reply: Automated Response Suggestion for Email (AK, KK, SR, TK, AT, BM, GC, LL, MG, PY, VR), pp. 955–964.
KDD-2016-Lemmerich0SHHS #behaviour #mining
Mining Subgroups with Exceptional Transition Behavior (FL, MB0, PS, DH, AH, MS), pp. 965–974.
KDD-2016-LiGHZ #learning #recommendation
Point-of-Interest Recommendations: Learning Potential Check-ins from Friends (HL, YG, RH, HZ), pp. 975–984.
KDD-2016-Li0TFT #named #network
QUINT: On Query-Specific Optimal Networks (LL, YY0, JT0, WF0, HT), pp. 985–994.
KDD-2016-LiangYK #clustering #documentation #streaming
Dynamic Clustering of Streaming Short Documents (SL, EY, EK), pp. 995–1004.
KDD-2016-LiuSCX #multi #optimisation
Rebalancing Bike Sharing Systems: A Multi-source Data Smart Optimization (JL, LS, WC0, HX), pp. 1005–1014.
KDD-2016-LiuLLQX #assessment #recommendation
Unified Point-of-Interest Recommendation with Temporal Interval Assessment (YL, CL, BL0, MQ, HX), pp. 1015–1024.
KDD-2016-MaiAS #algorithm #clustering #dataset #named #performance #scalability
AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets (STM, IA, MS), pp. 1025–1034.
KDD-2016-ManzoorMA #detection #graph #performance #streaming
Fast Memory-efficient Anomaly Detection in Streaming Heterogeneous Graphs (EAM, SMM, LA), pp. 1035–1044.
KDD-2016-MatsubaraS #co-evolution #realtime #sequence
Regime Shifts in Streams: Real-time Forecasting of Co-evolving Time Sequences (YM, YS), pp. 1045–1054.
KDD-2016-MaurusP #clustering #named
Skinny-dip: Clustering in a Sea of Noise (SM, CP), pp. 1055–1064.
KDD-2016-MelnykBMO #detection #markov #modelling
Semi-Markov Switching Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems (IM, AB, BLM, NCO), pp. 1065–1074.
KDD-2016-MukherjeeGW
Continuous Experience-aware Language Model (SM, SG, GW), pp. 1075–1084.
KDD-2016-NandanwarM #classification #network
Structural Neighborhood Based Classification of Nodes in a Network (SN, MNM), pp. 1085–1094.
KDD-2016-NingMRR #learning #modelling #multi
Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning (YN, SM, HR, NR), pp. 1095–1104.
KDD-2016-OuCPZ0 #graph #symmetry #transitive
Asymmetric Transitivity Preserving Graph Embedding (MO, PC0, JP, ZZ, WZ0), pp. 1105–1114.
KDD-2016-ParkMK #distributed #named
PTE: Enumerating Trillion Triangles On Distributed Systems (HMP, SHM, UK), pp. 1115–1124.
KDD-2016-RendleFSS #in the cloud #machine learning #robust #scalability
Robust Large-Scale Machine Learning in the Cloud (SR, DF, EJS, BYS), pp. 1125–1134.
KDD-2016-Ribeiro0G #classification #predict #quote #trust #why
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier (MTR, SS0, CG), pp. 1135–1144.
KDD-2016-RiondatoU #approximate #graph #named
ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages (MR, EU), pp. 1145–1154.
KDD-2016-Robles-GrandaMN #generative #modelling #network
Sampling of Attributed Networks from Hierarchical Generative Models (PRG, SM, JN), pp. 1155–1164.
KDD-2016-SiCHRD #induction #matrix
Goal-Directed Inductive Matrix Completion (SS, KYC, CJH, NR, ISD), pp. 1165–1174.
KDD-2016-SilvaDBSS #graph
Graph Wavelets via Sparse Cuts (AS, XHD, PB, AKS, AS), pp. 1175–1184.
KDD-2016-SiyariDD #framework #named #optimisation
Lexis: An Optimization Framework for Discovering the Hierarchical Structure of Sequential Data (PS, BD, CD), pp. 1185–1194.
KDD-2016-Ting #estimation #sketching #towards
Towards Optimal Cardinality Estimation of Unions and Intersections with Sketches (DT), pp. 1195–1204.
KDD-2016-TingZCZZ #difference #using
Overcoming Key Weaknesses of Distance-based Neighbourhood Methods using a Data Dependent Dissimilarity Measure (KMT, YZ, MJC, YZ, ZHZ), pp. 1205–1214.
KDD-2016-TrouleauADE #behaviour #modelling
Just One More: Modeling Binge Watching Behavior (WT, AA, WD, BE), pp. 1215–1224.
KDD-2016-WangC0 #network
Structural Deep Network Embedding (DW, PC0, WZ0), pp. 1225–1234.
KDD-2016-WangCF0E #analysis #modelling #topic
Targeted Topic Modeling for Focused Analysis (SW, ZC0, GF, BL0, SE), pp. 1235–1244.
KDD-2016-WangNH #clustering #graph #matrix #probability
Structured Doubly Stochastic Matrix for Graph Based Clustering: Structured Doubly Stochastic Matrix (XW, FN, HH), pp. 1245–1254.
KDD-2016-WebbP #multi #statistics #testing
A Multiple Test Correction for Streams and Cascades of Statistical Hypothesis Tests (GIW, FP), pp. 1255–1264.
KDD-2016-WuYCY #convergence #performance #random
Revisiting Random Binning Features: Fast Convergence and Strong Parallelizability (LW, IEHY, JC, RY), pp. 1265–1274.
KDD-2016-XuT0 #learning #multi #robust
Robust Extreme Multi-label Learning (CX0, DT, CX0), pp. 1275–1284.
KDD-2016-XuZZLZCX #analysis #behaviour #network #perspective #social
Taxi Driving Behavior Analysis in Latent Vehicle-to-Vehicle Networks: A Social Influence Perspective (TX, HZ, XZ, QL0, HZ, EC, HX), pp. 1285–1294.
KDD-2016-ZhaiCZZ #learning #named #network #online
DeepIntent: Learning Attentions for Online Advertising with Recurrent Neural Networks (SZ, KhC, RZ, Z(Z), pp. 1295–1304.
KDD-2016-ZhangZYZHH #modelling #named #social #social media #using
GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media (CZ0, KZ, QY0, LZ, TH, JH0), pp. 1305–1314.
KDD-2016-ZhangLG #approximate #graph #personalisation #rank
Approximate Personalized PageRank on Dynamic Graphs (HZ, PL, AG), pp. 1315–1324.
KDD-2016-ZhangZCWCCJQY #adaptation
Annealed Sparsity via Adaptive and Dynamic Shrinking (KZ0, SZ, CC, ZW, ZC, HC, GJ, YQ, JY), pp. 1325–1334.
KDD-2016-ZhangZL #ambiguity #learning
Partial Label Learning via Feature-Aware Disambiguation (MLZ, BBZ, XYL), pp. 1335–1344.
KDD-2016-ZhangT #named #network #performance
FINAL: Fast Attributed Network Alignment (SZ, HT), pp. 1345–1354.
KDD-2016-ZhangCFLY0Y #evolution
Come-and-Go Patterns of Group Evolution: A Dynamic Model (TZ, PC0, CF, YL, HY, WZ0, SY), pp. 1355–1364.
KDD-2016-ZhangXKZ #evolution #named #network
NetCycle: Collective Evolution Inference in Heterogeneous Information Networks (YZ, YX, XK, YZ), pp. 1365–1374.
KDD-2016-ZhouVBJD #higher-order #online
Accelerating Online CP Decompositions for Higher Order Tensors (SZ0, XVN, JB0, YJ, ID), pp. 1375–1384.
KDD-2016-LisbonaCL #empirical #online #video
Optimal Reserve Prices in Upstream Auctions: Empirical Application on Online Video Advertising (MAAL, SC, KcL), pp. 1395–1404.
KDD-2016-AlvesAM #random
Burstiness Scale: A Parsimonious Model for Characterizing Random Series of Events (RAdSA, RMA, POSVdM), pp. 1405–1414.
KDD-2016-BanerjeeYR #approach #mining #named #scalability
MANTRA: A Scalable Approach to Mining Temporally Anomalous Sub-trajectories (PB, PY, SR), pp. 1415–1424.
KDD-2016-BaoWL #approach #data-driven #network #predict #resource management
From Prediction to Action: A Closed-Loop Approach for Data-Guided Network Resource Allocation (YB, HW, XL0), pp. 1425–1434.
KDD-2016-BorboudakisT #robust #towards
Towards Robust and Versatile Causal Discovery for Business Applications (GB, IT), pp. 1435–1444.
KDD-2016-CaoLWYY #retrieval #semantics
Deep Visual-Semantic Hashing for Cross-Modal Retrieval (YC0, ML, JW0, QY0, PSY), pp. 1445–1454.
KDD-2016-ChakrabortyVJS #predict #using
Predicting Socio-Economic Indicators using News Events (SC, AV, SJ, LS), pp. 1455–1464.
KDD-2016-ChenLHYGG #using
City-Scale Map Creation and Updating using GPS Collections (CC0, CL, QH, QY0, DG, LJG), pp. 1465–1474.
KDD-2016-ChenWTWC #network
Compressing Convolutional Neural Networks in the Frequency Domain (WC, JTW, ST, KQW, YC), pp. 1475–1484.
KDD-2016-ChiangLL #classification #coordination #linear #manycore #parallel #scalability
Parallel Dual Coordinate Descent Method for Large-scale Linear Classification in Multi-core Environments (WLC, MCL, CJL), pp. 1485–1494.
KDD-2016-ChoiBSCTBTS #concept #learning #multi #representation
Multi-layer Representation Learning for Medical Concepts (EC, MTB, ES, CC, MT, JB, JTS, JS), pp. 1495–1504.
KDD-2016-ChuWPWZC #network
Finding Gangs in War from Signed Networks (LC, ZW, JP, JW, ZZ, EC), pp. 1505–1514.
KDD-2016-CoskunGK #network #performance #proximity #query
Efficient Processing of Network Proximity Queries via Chebyshev Acceleration (MC, AG, MK), pp. 1515–1524.
KDD-2016-DengSDZYL #network #predict
Latent Space Model for Road Networks to Predict Time-Varying Traffic (DD, CS, UD, LZ, RY, YL0), pp. 1525–1534.
KDD-2016-DhulipalaKKOPS #graph #recursion
Compressing Graphs and Indexes with Recursive Graph Bisection (LD, IK, BK, GO, SP, AS), pp. 1535–1544.
KDD-2016-ReisFMB #detection #incremental #online #performance #using
Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-Smirnov Test (DMdR, PAF, SM, GEAPAB), pp. 1545–1554.
KDD-2016-DuDTUGS #process
Recurrent Marked Temporal Point Processes: Embedding Event History to Vector (ND, HD, RT, UU, MGR, LS), pp. 1555–1564.
KDD-2016-FeiW0 #cumulative #information management #learning
Learning Cumulatively to Become More Knowledgeable (GF, SW, BL0), pp. 1565–1574.
KDD-2016-GaoP #dataset #named #relational
Squish: Near-Optimal Compression for Archival of Relational Datasets (YG, AGP), pp. 1575–1584.
KDD-2016-HanZZ #component #estimation #performance #scalability
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation (LH0, YZ0, TZ0), pp. 1585–1594.
KDD-2016-HuangZCSML #network #scalability
Meta Structure: Computing Relevance in Large Heterogeneous Information Networks (ZH0, YZ, RC, YS, NM, XL), pp. 1595–1604.
KDD-2016-HuoNH #effectiveness #learning #metric #robust #using
Robust and Effective Metric Learning Using Capped Trace Norm: Metric Learning via Capped Trace Norm (ZH, FN, HH), pp. 1605–1614.
KDD-2016-KangLSB #analysis #component
Subjectively Interesting Component Analysis: Data Projections that Contrast with Prior Expectations (BK, JL, RSR, TDB), pp. 1615–1624.
KDD-2016-KarLNC0 #online #optimisation #problem #quantifier
Online Optimization Methods for the Quantification Problem (PK, SL, HN, SC, FS0), pp. 1625–1634.
KDD-2016-KarimiTFSG #question
Smart Broadcasting: Do You Want to be Seen? (MRK, ET, MF, LS, MGR), pp. 1635–1644.
KDD-2016-KimMJO #how #modelling #online #word
How to Compete Online for News Audience: Modeling Words that Attract Clicks (JHK, AM, AJ, AHO), pp. 1645–1654.
KDD-2016-KummerfeldR #clustering #metric #modelling
Causal Clustering for 1-Factor Measurement Models (EK, JR), pp. 1655–1664.
KDD-2016-LabutovSLLS #data-driven #design #modelling #set
Optimally Discriminative Choice Sets in Discrete Choice Models: Application to Data-Driven Test Design (IL, FS, KL, HL, CS), pp. 1665–1674.
KDD-2016-LakkarajuBL #framework #predict #set
Interpretable Decision Sets: A Joint Framework for Description and Prediction (HL, SHB, JL), pp. 1675–1684.
KDD-2016-LazersonKS #distributed #lightweight #monitoring
Lightweight Monitoring of Distributed Streams (AL, DK, AS), pp. 1685–1694.
KDD-2016-LethamLR #behaviour #transaction
Bayesian Inference of Arrival Rate and Substitution Behavior from Sales Transaction Data with Stockouts (BL, LML, CR), pp. 1695–1704.
KDD-2016-LiQJTYW #big data #optimisation #parallel
Parallel Lasso Screening for Big Data Optimization (QL, SQ, SJ, PMT, JY, JW0), pp. 1705–1714.
KDD-2016-LiWYR #analysis #learning #multi
A Multi-Task Learning Formulation for Survival Analysis (YL, JW0, JY, CKR), pp. 1715–1724.
KDD-2016-LiLDWWC #algorithm #linear #parallel #sequence
A Real Linear and Parallel Multiple Longest Common Subsequences (MLCS) Algorithm (YL, HL, TD, SW, ZW, YC), pp. 1725–1734.
KDD-2016-LinXBJZ #feature model #interactive #learning #multi
Multi-Task Feature Interaction Learning (KL, JX, IMB, SJ, JZ), pp. 1735–1744.
KDD-2016-LiuSLF #clustering #image #infinity
Infinite Ensemble for Image Clustering (HL, MS, SL0, YF0), pp. 1745–1754.
KDD-2016-MaccioniA #graph #pattern matching #scalability
Scalable Pattern Matching over Compressed Graphs via Dedensification (AM, DJA), pp. 1755–1764.
KDD-2016-MahmoodyTU #scalability
Scalable Betweenness Centrality Maximization via Sampling (AM, CET, EU), pp. 1765–1773.
KDD-2016-MuZLXWZ #modelling
User Identity Linkage by Latent User Space Modelling (XM, FZ0, EPL, JX, JW, ZHZ), pp. 1775–1784.
KDD-2016-NakagawaSKTT #approach #mining #performance #predict
Safe Pattern Pruning: An Efficient Approach for Predictive Pattern Mining (KN, SS, MK, KT, IT), pp. 1785–1794.
KDD-2016-NieGY #multi #predict
Predict Risk of Relapse for Patients with Multiple Stages of Treatment of Depression (ZN, PG, JY), pp. 1795–1804.
KDD-2016-OmariKYS #layout #web
Lossless Separation of Web Pages into Layout Code and Data (AO, BK, EY, SS), pp. 1805–1814.
KDD-2016-ReddyLBJ #bound #learning #scheduling
Unbounded Human Learning: Optimal Scheduling for Spaced Repetition (SR, IL, SB, TJ), pp. 1815–1824.
KDD-2016-RenHQVJH #reduction #type system
Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding (XR, WH, MQ, CRV, HJ, JH0), pp. 1825–1834.
KDD-2016-RozenshteinGPV
Reconstructing an Epidemic Over Time (PR, AG, BAP, JV), pp. 1835–1844.
KDD-2016-ShiASWM #overview
Improving Survey Aggregation with Sparsely Represented Signals (TS, FA, MS, DPW, TM), pp. 1845–1854.
KDD-2016-Shi0CTGR #multi #network #scalability #social
Dynamics of Large Multi-View Social Networks: Synergy, Cannibalization and Cross-View Interplay (YS, MK0, SC, MT, SG, RR), pp. 1855–1864.
KDD-2016-SunLGXX #automation #data-driven #development #recommendation
Data-driven Automatic Treatment Regimen Development and Recommendation (LS, CL, CG, HX, YX), pp. 1865–1874.
KDD-2016-TabeiSYP #matrix #scalability
Scalable Partial Least Squares Regression on Grammar-Compressed Data Matrices (YT, HS, YY, SJP), pp. 1875–1884.
KDD-2016-WanCKHGZ #approach #modelling
From Truth Discovery to Trustworthy Opinion Discovery: An Uncertainty-Aware Quantitative Modeling Approach (MW, XC, LMK, JH0, JG0, BZ0), pp. 1885–1894.
KDD-2016-WangELBZGC #challenge #email #recommendation
The Million Domain Challenge: Broadcast Email Prioritization by Cross-domain Recommendation (BW, ME, YL, JB, YZ, ZG, DC), pp. 1895–1904.
KDD-2016-WeiZ0
Transfer Knowledge between Cities (YW, YZ0, QY0), pp. 1905–1914.
KDD-2016-WuMSZZCW #probability #robust
Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics (HW0, JM, WS, BZ, HZ, ZC, WW0), pp. 1915–1924.
KDD-2016-XiaoGWWSL #approach
A Truth Discovery Approach with Theoretical Guarantee (HX, JG0, ZW, SW, LS, HL0), pp. 1925–1934.
KDD-2016-XiaoGLMSFZ #approach #towards
Towards Confidence in the Truth: A Bootstrapping based Truth Discovery Approach (HX, JG0, QL0, FM, LS, YF, AZ), pp. 1935–1944.
KDD-2016-YangFK0 #algorithm #feature model #online #parallel
Online Feature Selection: A Limited-Memory Substitution Algorithm and Its Asynchronous Parallel Variation (HY, RF, YK, JL0), pp. 1945–1954.
KDD-2016-YangLGZSY
Absolute Fused Lasso and Its Application to Genome-Wide Association Studies (TY0, JL0, PG, RZ, XS, JY), pp. 1955–1964.
KDD-2016-YangYWCZL #mining
Diversified Temporal Subgraph Pattern Mining (YY, DY0, HW, JC, SZ, JCSL), pp. 1965–1974.
KDD-2016-Yang0Z #probability #scalability
Distributing the Stochastic Gradient Sampler for Large-Scale LDA (YY, JC0, JZ0), pp. 1975–1984.
KDD-2016-YeGPB #clustering #named
FUSE: Full Spectral Clustering (WY0, SG, CP, CB), pp. 1985–1994.
KDD-2016-YinW #algorithm #clustering #online #using
A Text Clustering Algorithm Using an Online Clustering Scheme for Initialization (JY, JW), pp. 1995–2004.
KDD-2016-YuanYZH #approximate #difference #linear #optimisation #privacy #query
Convex Optimization for Linear Query Processing under Approximate Differential Privacy (GY, YY, ZZ, ZH), pp. 2005–2014.
KDD-2016-ZangCF #network #social
Beyond Sigmoids: The NetTide Model for Social Network Growth, and Its Applications (CZ, PC0, CF), pp. 2015–2024.
KDD-2016-ZengWML #multi #online #recommendation
Online Context-Aware Recommendation with Time Varying Multi-Armed Bandit (CZ, QW, SM, TL0), pp. 2025–2034.
KDD-2016-ZhangG #coordination #probability
Accelerated Stochastic Block Coordinate Descent with Optimal Sampling (AZ, QG), pp. 2035–2044.
KDD-2016-ZhangWZWLSJ #collaboration #multi
Collaborative Multi-View Denoising (LZ, SW, XZ0, YW, BL, DS, SJ), pp. 2045–2054.
KDD-2016-ZhangYS #learning #online #symmetry
Online Asymmetric Active Learning with Imbalanced Data (XZ, TY, PS), pp. 2055–2064.
KDD-2016-ZhangBSS #named #optimisation #performance #pipes and filters
FLASH: Fast Bayesian Optimization for Data Analytic Pipelines (YZ, MTB, HS, JS), pp. 2065–2074.
KDD-2016-ZhaoLWGC #multi #perspective
Portfolio Selections in P2P Lending: A Multi-Objective Perspective (HZ, QL0, GW, YG, EC), pp. 2075–2084.
KDD-2016-ZhaoYCLR #learning #multi
Hierarchical Incomplete Multi-source Feature Learning for Spatiotemporal Event Forecasting (LZ0, JY, FC0, CTL, NR), pp. 2085–2094.
KDD-2016-ZhengYC #invariant #learning #performance #taxonomy
Efficient Shift-Invariant Dictionary Learning (GZ, YY, JGC), pp. 2095–2104.
KDD-2016-ZuoWZLWXX #modelling #perspective #pseudo #topic
Topic Modeling of Short Texts: A Pseudo-Document View (YZ, JW, HZ0, HL, FW, KX0, HX), pp. 2105–2114.
KDD-2016-AgostaGHIKZ #clustering #data analysis #scalability #using
Scalable Data Analytics Using R: Single Machines to Hadoop Spark Clusters (JMA, DG, RH, MI, SK, MZ), p. 2115.
KDD-2016-ChenH0 #machine learning #web
Lifelong Machine Learning and Computer Reading the Web (ZC0, ERHJ, BL0), pp. 2117–2118.
KDD-2016-MoralesBKGF #big data #data type #mining
IoT Big Data Stream Mining (GDFM, AB, LK, JG, WF0), pp. 2119–2120.
KDD-2016-GaoLZFH #crowdsourcing #mining #reliability
Mining Reliable Information from Passively and Actively Crowdsourced Data (JG0, QL0, BZ0, WF0, JH0), pp. 2121–2122.
KDD-2016-GuptaA #streaming
Streaming Analytics (AG, NA), p. 2123.
KDD-2016-HajianBC #algorithm #bias #data mining #mining
Algorithmic Bias: From Discrimination Discovery to Fairness-aware Data Mining (SH, FB, CC0), pp. 2125–2126.
KDD-2016-HuLL #predict #profiling #social
Collective Sensemaking via Social Sensors: Extracting, Profiling, Analyzing, and Predicting Real-world Events (YH, YRL, JL), pp. 2127–2128.
KDD-2016-MueenK #performance
Extracting Optimal Performance from Dynamic Time Warping (AM, EJK), pp. 2129–2130.
KDD-2016-PetitjeanW #learning #modelling #scalability #visual notation
Scalable Learning of Graphical Models (FP, GIW), pp. 2131–2132.
KDD-2016-PrakashR #algorithm #data mining #mining #modelling
Leveraging Propagation for Data Mining: Models, Algorithms and Applications (BAP, NR), pp. 2133–2134.
KDD-2016-SeideA #named #open source #tool support
CNTK: Microsoft's Open-Source Deep-Learning Toolkit (FS, AA), p. 2135.
KDD-2016-WangZD #data mining #matrix #mining #modelling
Healthcare Data Mining with Matrix Models (FW0, PZ0, JD), pp. 2137–2138.
KDD-2016-0002GOL #modelling #predict #scalability
Business Applications of Predictive Modeling at Scale (QZ0, SG, PO, YL), pp. 2139–2140.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.