Travelled to:
1 × Germany
1 × Greece
1 × India
1 × Romania
1 × South Africa
1 × United Kingdom
15 × USA
2 × China
2 × Hungary
2 × Ireland
3 × France
4 × Italy
5 × The Netherlands
6 × Canada
Collaborated with:
M.Harman D.Lawrie ∅ J.Krinke D.J.Lawrie C.Morrell S.S.Islam H.Feild N.Gold B.M.Kuhn R.M.Hierons K.Gallagher R.Oliveto S.Danicic S.Yoo S.Horwitz T.W.Reps G.Bavota A.Qusef A.D.Lucia Z.Li A.Wheeler S.Maex T.Gyimóthy Á.Kiss T.M.Meyers L.R.Raszewski C.Smith P.Anderson G.Rosay T.Teitelbaum D.Foty E.Hill P.Tonella K.Mahdavi R.D.Eastman C.Uehlinger M.Hearn B.Korel D.Heinz J.Overfelt Y.Jia M.Davis H.E.Graeb G.G.E.Gielen J.S.Roychowdhury P.McMinn R.Singh L.Hu R.Capellini B.Duncan B.Jubb A.Wielgosz L.Moonen S.D.Alesio T.Rolfsnes Á.Beszédes J.Jász B.Vancsics L.L.Pollock K.Vijay-Shanker M.Ceccato F.Ricca C.Fox N.E.Gold A.Bacchelli B.Dit L.Ouarbya K.Androutsopoulos D.Clark K.Lano Y.Yang Y.Zhou B.Xu J.Burge I.Harris R.Hebig O.Keszocze K.Reed J.Slankas
Talks about:
slice (23) depend (12) studi (9) code (9) identifi (8) empir (8) use (8) cluster (6) test (6) base (6)
♂ Person: David Binkley
DBLP: Binkley:David
Facilitated 8 volumes:
Contributed to:
Wrote 67 papers:
- ICSME-2015-BinkleyBIJV #clustering #dependence
- Uncovering dependence clusters and linchpin functions (DB, ÁB, SSI, JJ, BV), pp. 141–150.
- SCAM-2015-BinkleyGHIKY #slicing
- ORBS and the limits of static slicing (DB, NEG, MH, SSI, JK, SY), pp. 1–10.
- SCAM-2015-LawrieB #navigation #source code #word
- Navigating source code with words (DL, DB), pp. 71–80.
- FSE-2014-BinkleyGHIKY #independence #named #slicing
- ORBS: language-independent program slicing (DB, NG, MH, SSI, JK, SY), pp. 109–120.
- ICPC-2014-BinkleyHLO #analysis #comprehension #source code
- Understanding LDA in source code analysis (DB, DH, DJL, JO), pp. 26–36.
- ICSME-2014-BinkleyL #information retrieval #learning #rank
- Learning to Rank Improves IR in SE (DB, DJL), pp. 441–445.
- SCAM-2014-YooBE #slicing
- Seeing Is Slicing: Observation Based Slicing of Picture Description Languages (SY, DB, RDE), pp. 175–184.
- ICSM-2013-BinkleyLHBHHKRS #summary
- Task-Driven Software Summarization (DB, DL, EH, JB, IH, RH, OK, KR, JS), pp. 432–435.
- ICSM-2013-HillBBDLO #feature model #question
- Which Feature Location Technique is Better? (EH, AB, DB, BD, DL, RO), pp. 408–411.
- MSR-2013-BinkleyLPHV #dataset #identifier
- A dataset for evaluating identifier splitters (DB, DL, LLP, EH, KVS), pp. 401–404.
- ICSM-2012-BavotaQOLB #analysis #empirical #maintenance #smell #testing
- An empirical analysis of the distribution of unit test smells and their impact on software maintenance (GB, AQ, RO, ADL, DB), pp. 56–65.
- ICSM-2012-BinkleyLU #concept #normalisation
- Vocabulary normalization improves IR-based concept location (DB, DL, CU), pp. 588–591.
- ICSE-2011-AndroutsopoulosBCGHLL #modelling #strict
- Model projection: simplifying models in response to restricting the environment (KA, DB, DC, NG, MH, KL, ZL), pp. 291–300.
- ICSM-2011-LawrieB #identifier #source code
- Expanding identifiers to normalize source code vocabulary (DL, DB), pp. 113–122.
- ICSM-2011-QusefBOLB #concept #named #slicing #traceability #using
- SCOTCH: Test-to-code traceability using slicing and conceptual coupling (AQ, GB, RO, ADL, DB), pp. 63–72.
- MSR-2011-BinkleyHL #identifier #speech #using
- Improving identifier informativeness using part of speech information (DB, MH, DL), pp. 203–206.
- WCRE-2011-QusefBOLB #named #slicing
- SCOTCH: Slicing and Coupling Based Test to Code Trace Hunter (AQ, GB, RO, ADL, DB), pp. 443–444.
- MSR-2010-KrinkeGJB #gnome
- Cloning and copying between GNOME projects (JK, NG, YJ, DB), pp. 98–101.
- PASTE-2010-IslamKBH #clustering #dependence
- Coherent dependence clusters (SSI, JK, DB, MH), pp. 53–60.
- SCAM-2010-WheelerB #subclass
- Subclass Instantiation Distribution (AW, DB), pp. 23–32.
- SOFTVIS-2010-IslamKB #clustering #dependence #visualisation
- Dependence cluster visualization (SSI, JK, DB), pp. 93–102.
- WCRE-2010-LawrieBM #normalisation #source code
- Normalizing Source Code Vocabulary (DJL, DB, CM), pp. 3–12.
- ICPC-2009-BinkleyDLM
- To camelcase or under_score (DB, MD, DL, CM), pp. 158–167.
- SCAM-2009-BinkleyH #clustering #dependence #identification #scalability
- Identifying “Linchpin Vertices” That Cause Large Dependence Clusters (DB, MH), pp. 89–98.
- DATE-2008-BinkleyGGR #design
- From Transistor to PLL — Analogue Design and EDA Methods (DB, HEG, GGEG, JSR).
- ICPC-2008-BinkleyLMM #memory management
- Impact of Limited Memory Resources (DB, DL, SM, CM), pp. 83–92.
- ICPC-J-2008-BinkleyLMM09 #identifier #memory management
- Identifier length and limited programmer memory (DB, DL, SM, CM), pp. 430–445.
- SCAM-2008-BinkleyGHLM #analysis
- Evaluating Key Statements Analysis (DB, NG, MH, ZL, KM), pp. 121–130.
- SCAM-2007-LawrieFB #identifier
- Extracting Meaning from Abbreviated Identifiers (DL, HF, DB), pp. 213–222.
- ICPC-2006-LawrieFB #assessment #information retrieval #quality #using
- Leveraged Quality Assessment using Information Retrieval Techniques (DJL, HF, DB), pp. 149–158.
- ICPC-2006-LawrieMFB #case study #identifier #what
- What’s in a Name? A Study of Identifiers (DL, CM, HF, DB), pp. 3–12.
- ISSTA-2006-McMinnHBT #approach #generative #testing
- The species per path approach to SearchBased test data generation (PM, MH, DB, PT), pp. 13–24.
- SCAM-2006-BinkleyHK #animation #approximate #static analysis
- Characterising, Explaining, and Exploiting the Approximate Nature of Static Analysis through Animation (DB, MH, JK), pp. 43–52.
- SCAM-2006-GallagherBH #slicing
- Stop-List Slicing (KG, DB, MH), pp. 11–20.
- SCAM-2006-LawrieFB #consistency #identifier
- Syntactic Identifier Conciseness and Consistency (DL, HF, DB), pp. 139–148.
- WCRE-2006-BinkleyGHLM #concept #empirical #execution #slicing
- An Empirical Study of Executable Concept Slice Size (DB, NG, MH, ZL, KM), pp. 103–114.
- ICSM-2005-BinkleyCHRT #aspect-oriented #automation #object-oriented #refactoring
- Automated Refactoring of Object Oriented Code into Aspects (DB, MC, MH, FR, PT), pp. 27–36.
- ICSM-2005-BinkleyH #clustering #dependence
- Locating Dependence Clusters and Dependence Pollution (DB, MH), pp. 177–186.
- SCAM-2005-BinkleyDGHKK #slicing
- Minimal Slicing and the Relationships Between Forms of Slicing (DB, SD, TG, MH, ÁK, BK), pp. 45–56.
- SCAM-2005-BinkleyH #slicing
- Forward slices are smaller than backward slices (DB, MH), pp. 15–24.
- SCAM-J-2005-BinkleyDGHKK06 #formal method #slicing
- A formalisation of the relationship between forms of program slicing (DB, SD, TG, MH, ÁK, BK), pp. 228–252.
- SCAM-2004-BinkleyDGHKO #execution #formal method #slicing
- Formalizing Executable Dynamic and Forward Slicing (DB, SD, TG, MH, ÁK, LO), pp. 43–52.
- SCAM-2004-HarmanBSH
- Amorphous Procedure Extraction (MH, DB, RS, RMH), pp. 85–94.
- WCRE-2004-HuHHB #slicing
- Loop Squashing Transformations for Amorphous Slicing (LH, MH, RMH, DB), pp. 152–160.
- WCRE-2004-MeyersB #metric
- Slice-Based Cohesion Metrics and Software Intervention (TMM, DB), pp. 256–265.
- ICSE-2003-BinkleyH #dependence #empirical #roadmap
- An Empirical Study of Predicate Dependence Levels and Trends (DB, MH), pp. 330–340.
- ICSM-2003-BinkleyH #context-sensitive grammar #empirical #scalability #slicing
- A Large-Scale Empirical Study of Forward and Backward Static Slice Size and Context Sensitivity (DB, MH), pp. 44–53.
- SCAM-2003-BinkleyH #algorithm #analysis #graph #optimisation #performance #reachability #scalability #source code
- Results from a Large-Scale Study of Performance Optimization Techniques for Source Code Analyses Based on Graph Reachability Algorithms (DB, MH), p. 203–?.
- WCRE-2003-GallagherB #composition #empirical #equivalence #slicing
- An Empirical Study of Computation Equivalence as Determined by Decomposition Slice Equivalence (KG, DB), pp. 316–322.
- IWPC-2002-Binkley #comprehension #difference #empirical #semantics
- An Empirical Study of the Effect of Semantic Differences on Programmer Comprehension (DB), pp. 97–106.
- WCRE-2002-HarmanGHB #algorithm #concept #slicing
- Code Extraction Algorithms which Unify Slicing and Concept Assignment (MH, NG, RMH, DB), pp. 11–21.
- ICSM-2001-BinkleyCRS #difference #empirical #implementation #semantics
- An Implementation of and Experiment with Semantic Differencing (DB, RC, LRR, CS), pp. 82–91.
- SCAM-2001-AndersonBRT #points-to #set
- Flow Insensitive Points-To Sets (PA, DB, GR, TT), pp. 81–91.
- SCAM-J-2001-AndersonBRT02 #points-to #set
- Flow insensitive points-to sets (PA, DB, GR, TT), pp. 743–754.
- DAC-2000-FotyB #design #modelling
- MOSFET modeling and circuit design: re-establishing a lost connection (DF, DB), p. 560.
- IWPC-2000-BinkleyRSH #comprehension #empirical #slicing
- An Empirical Study of Amorphous Slicing as a Program Comprehension Support Tool (DB, LRR, CS, MH), pp. 161–170.
- IWPC-1999-HarmanFHBD #approximate #decidability
- Program Simplification as a Means of Approximating Undecidable Propositions (MH, CF, RMH, DB, SD), pp. 208–217.
- SAC-1999-Binkley #dependence #graph #slicing #using
- Computing Amorphous Program Slices Using Dependence Graphs (DB), pp. 519–525.
- IWPC-1998-BinkleyDJW #compilation #feedback
- The Feedback Compiler (DB, BD, BJ, AW), pp. 198–205.
- SAC-1997-BinkleyK #named #problem
- Crozzle: an NP-complete problem (DB, BMK), pp. 30–34.
- SAC-1996-KuhnB #c++ #optimisation
- An enabling optimization for C++ virtual functions (BMK, DB), pp. 420–428.
- ICSM-1995-Binkley #cost analysis #semantics #testing
- Reducing the cost of regression testing by semantics guided test case selection (DB), p. 251–?.
- CC-1994-Binkley #constant #data flow #dependence #graph #interprocedural #using
- Interprocedural Constant Propagation using Dependence Graphs and a Data-Flow Model (DB), pp. 374–388.
- Best-of-PLDI-1988-HorwitzRB88a #dependence #graph #interprocedural #slicing #using
- Interprocedural slicing using dependence graphs (with retrospective) (SH, TWR, DB), pp. 229–243.
- PLDI-1988-HorwitzRB #dependence #graph #interprocedural #slicing #using
- Interprocedural Slicing Using Dependence Graphs (SH, TWR, DB), pp. 35–46.
- ASE-2016-MoonenABR #guidelines #mining #recommendation #using
- Practical guidelines for change recommendation using association rule mining (LM, SDA, DB, TR), pp. 732–743.
- ASE-2016-YangHKIBZX #clustering #dependence #empirical #predict
- An empirical study on dependence clusters for effort-aware fault-proneness prediction (YY, MH, JK, SSI, DB, YZ, BX), pp. 296–307.