Travelled to:
1 × Sweden
1 × Taiwan
Collaborated with:
K.Goldberg Michael Danielczuk M.Laskey Christopher Correa Pusong Li Matthew Matl F.T.Pokorny Ajay Kumar Tanwani S.Patil P.Abbeel Jacky Liang Brian Hou Sherdil Niyaz Ramu Chandra Bill DeRose Juan Aparicio Ojea Z.McCarthy J.P.v.d.Berg D.Kragic Benno Staub Michel Breyer Yutaka Takaoka Max Bajracharya R.Siegwart D.Wang David Tseng Yiding Jiang Menglong Guo Jeffrey Ichnowski S.Krishnan S.Sen A.Murali B.Kehoe J.Wang M.Franklin K.Y.Goldberg
Talks about:
grasp (8) robot (4) plan (3) robust (2) learn (2) cloud (2) deep (2) use (2) net (2) dex (2)
Person: Jeffrey Mahler
DBLP: Mahler:Jeffrey
Contributed to:
Wrote 10 papers:
- CASE-2015-LaskeyMMPPBKAG #2d #modelling #multi #nondeterminism
- Multi-armed bandit models for 2D grasp planning with uncertainty (ML, JM, ZM, FTP, SP, JPvdB, DK, PA, KG), pp. 572–579.
- CASE-2014-MahlerKLSMKPWFAG #learning #process #using
- Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression (JM, SK, ML, SS, AM, BK, SP, JW, MF, PA, KYG), pp. 532–539.
- CASE-2016-MahlerHNPCG #in the cloud #privacy
- Privacy-preserving Grasp Planning in the Cloud (JM, BH, SN, FTP, RC, KG), pp. 468–475.
- CASE-2017-LiangMLLG #automation #industrial #learning #using
- Using dVRK teleoperation to facilitate deep learning of automation tasks for an industrial robot (JL, JM, ML, PL, KG), pp. 1–8.
- CASE-2017-MatlMG #3d #algorithm
- An algorithm for transferring parallel-jaw grasps between 3D mesh subsegments (MM, JM, KG), pp. 756–763.
- CASE-2018-DanielczukMCG #linear #policy
- Linear Push Policies to Increase Grasp Access for Robot Bin Picking (MD, JM, CC, KG), pp. 1249–1256.
- CASE-2018-LiDMOTG #as a service #robust
- Dex-Net as a Service (DNaaS): A Cloud-Based Robust Robot Grasp Planning System (PL, BD, JM, JAO, AKT, KG), pp. 1420–1427.
- CASE-2019-CorreaMDG #robust
- Robust Toppling for Vacuum Suction Grasping (CC, JM, MD, KG), pp. 1421–1428.
- CASE-2019-StaubTMBLTBSG #mobile
- Dex-Net MM: Deep Grasping for Surface Decluttering with a Low-Precision Mobile Manipulator (BS, AKT, JM, MB, ML, YT, MB, RS, KG), pp. 1373–1379.
- CASE-2019-WangTLJGDMIG
- Adversarial Grasp Objects (DW, DT, PL, YJ, MG, MD, JM, JI, KG), pp. 241–248.