Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang 0001, Luo Si, Xiaofang Zhou 0001, Yi Chang, Yunyao Li 0001, Parikshit Sondhi
Proceedings of the 25th ACM International Conference on Information and Knowledge Management
CIKM, 2016.
Contents (327 items)
- CIKM-2016-Agrawal #data-driven #education #towards
- Toward Data-Driven Education: CIKM-2016 Keynote (RA0), p. 3.
- CIKM-2016-WangLEWC #recommendation #social
- Social Recommendation with Strong and Weak Ties (XW0, WL, ME, CW0, CC0), pp. 5–14.
- CIKM-2016-XieYWXCW #graph #learning #recommendation
- Learning Graph-based POI Embedding for Location-based Recommendation (MX, HY, HW, FX, WC, SW), pp. 15–24.
- CIKM-2016-WangLCLV #personalisation #recommendation
- Improving Personalized Trip Recommendation by Avoiding Crowds (XW, CL, JC, KHL0, TV), pp. 25–34.
- CIKM-2016-Fernandez-Tobias #recommendation #web
- Memory-based Recommendations of Entities for Web Search Users (IFT, RB), pp. 35–44.
- CIKM-2016-KasneciG #linear #named #network
- LICON: A Linear Weighting Scheme for the Contribution ofInput Variables in Deep Artificial Neural Networks (GK, TG), pp. 45–54.
- CIKM-2016-GuoFAC #ad hoc #retrieval
- A Deep Relevance Matching Model for Ad-hoc Retrieval (JG, YF, QA, WBC), pp. 55–64.
- CIKM-2016-TanWX #approach #network #recommendation
- A Neural Network Approach to Quote Recommendation in Writings (JT, XW0, JX), pp. 65–74.
- CIKM-2016-ZhangGWHH #network #predict #twitter
- Retweet Prediction with Attention-based Deep Neural Network (QZ0, YG, JW, HH, XH), pp. 75–84.
- CIKM-2016-LiXSM #approach #documentation #effectiveness #topic #word
- Effective Document Labeling with Very Few Seed Words: A Topic Model Approach (CL, JX, AS, ZM), pp. 85–94.
- CIKM-2016-XuYLH #classification
- Cross-lingual Text Classification via Model Translation with Limited Dictionaries (RX, YY, HL, AH), pp. 95–104.
- CIKM-2016-SoleimaniM #classification #documentation #modelling #multi #topic
- Semi-supervised Multi-Label Topic Models for Document Classification and Sentence Labeling (HS, DJM0), pp. 105–114.
- CIKM-2016-WangTAL #classification #documentation
- Linked Document Embedding for Classification (SW, JT, CCA, HL0), pp. 115–124.
- CIKM-2016-LiuLZZMYL #detection #query
- Detecting Promotion Campaigns in Query Auto Completion (YL, YL, KZ0, MZ0, SM, YY, HL), pp. 125–134.
- CIKM-2016-Hoang-VuVF #keyword #query
- A Unified Index for Spatio-Temporal Keyword Queries (TAHV, HTV, JF), pp. 135–144.
- CIKM-2016-JiangYCZY #network #privacy #query #reachability
- Privacy-Preserving Reachability Query Services for Massive Networks (JJ, PY, BC, ZZ, XY0), pp. 145–154.
- CIKM-2016-Balaneshinkordan #concept #graph #query #using
- Sequential Query Expansion using Concept Graph (SB, AK), pp. 155–164.
- CIKM-2016-GyselRK #learning
- Learning Latent Vector Spaces for Product Search (CVG, MdR, EK), pp. 165–174.
- CIKM-2016-ChuklinR #evaluation
- Incorporating Clicks, Attention and Satisfaction into a Search Engine Result Page Evaluation Model (AC, MdR), pp. 175–184.
- CIKM-2016-AielloAB0BMS
- The Role of Relevance in Sponsored Search (LMA, IA, RBY, XB0, NB, AM, FS), pp. 185–194.
- CIKM-2016-LiuLLC #composition #named #personalisation #random #rank #scalability
- PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition (QL, ZL, JCSL, JC), pp. 195–204.
- CIKM-2016-Vaithyanathan #knowledge base
- Building Industry-specific Knowledge Bases (SV), pp. 205–206.
- CIKM-2016-LiuLNFTAKVPWMDV #detection #realtime #scalability #twitter #verification
- Reuters Tracer: A Large Scale System of Detecting & Verifying Real-Time News Events from Twitter (XL, QL, AN, RF, MT, KA, RK, MV, SP, RW, RM, JD, AV, WK, SS), pp. 207–216.
- CIKM-2016-Avigdor-Elgrabli #clustering
- Structural Clustering of Machine-Generated Mail (NAE, MC, DDC, IG, IGZ, LLE, YM), pp. 217–226.
- CIKM-2016-YuanGJCYZ #learning #named #ranking #using
- LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates (FY, GG, JMJ, LC0, HY, WZ0), pp. 227–236.
- CIKM-2016-TkachenkoL #ranking
- Plackett-Luce Regression Mixture Model for Heterogeneous Rankings (MT, HWL), pp. 237–246.
- CIKM-2016-SilvaGAG #learning #rank
- Compression-Based Selective Sampling for Learning to Rank (RMS, GdCMG, MSA, MAG), pp. 247–256.
- CIKM-2016-SousaCRMG #feature model #learning #rank
- Incorporating Risk-Sensitiveness into Feature Selection for Learning to Rank (DXdS, SDC, TCR, WSM, MAG), pp. 257–266.
- CIKM-2016-SoulierTN #collaboration #recommendation #social #twitter
- Answering Twitter Questions: a Model for Recommending Answerers through Social Collaboration (LS, LT, GHN), pp. 267–276.
- CIKM-2016-WangJYJM #learning #using
- Learning to Extract Conditional Knowledge for Question Answering using Dialogue (PW, LJ, JY0, LJ, WYM), pp. 277–286.
- CIKM-2016-YangAGC #named #ranking
- aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model (LY0, QA, JG, WBC), pp. 287–296.
- CIKM-2016-GoodwinH
- Medical Question Answering for Clinical Decision Support (TRG, SMH), pp. 297–306.
- CIKM-2016-WangZHZ #detection #fault #wiki
- Error Link Detection and Correction in Wikipedia (CW0, RZ0, XH, AZ), pp. 307–316.
- CIKM-2016-WangOWWLPG #concept #using
- Using Prerequisites to Extract Concept Maps fromTextbooks (SW, AO, ZW0, KW, CL0, BP, CLG), pp. 317–326.
- CIKM-2016-HeindorfPSE #detection
- Vandalism Detection in Wikidata (SH, MP, BS0, GE), pp. 327–336.
- CIKM-2016-FetahuMNA #wiki
- Finding News Citations for Wikipedia (BF, KM, WN, AA), pp. 337–346.
- CIKM-2016-AllabLN #clustering #framework
- SemiNMF-PCA framework for Sparse Data Co-clustering (KA, LL, MN), pp. 347–356.
- CIKM-2016-XuK #clustering #effectiveness #performance
- Effective and Efficient Spectral Clustering on Text and Link Data (ZX, YK), pp. 357–366.
- CIKM-2016-TaoLLF #clustering #robust
- Robust Spectral Ensemble Clustering (ZT, HL, SL0, YF0), pp. 367–376.
- CIKM-2016-JinAYWSZ #clustering #documentation #hybrid #retrieval #version control
- Hybrid Indexing for Versioned Document Search with Cluster-based Retrieval (XJ0, DA, TY0, QW, YS, SZ), pp. 377–386.
- CIKM-2016-RenIAR #multi #social #summary
- Time-aware Multi-Viewpoint Summarization of Multilingual Social Text Streams (ZR, OI, LA, MdR), pp. 387–396.
- CIKM-2016-ZhuangRHGHA #social #summary
- Data Summarization with Social Contexts (HZ, RR, XH, TG0, PH, KA), pp. 397–406.
- CIKM-2016-LinZC #comprehension #probability #topic
- Understanding Sparse Topical Structure of Short Text via Stochastic Variational-Gibbs Inference (TL, SZ, HC), pp. 407–416.
- CIKM-2016-ZhaoCS #twitter
- Annotating Points of Interest with Geo-tagged Tweets (KZ0, GC, AS), pp. 417–426.
- CIKM-2016-Wang #named
- Duer: Intelligent Personal Assistant (HW), p. 427.
- CIKM-2016-DmitrievW #metric
- Measuring Metrics (PD, XW), pp. 429–437.
- CIKM-2016-ZhuLYZZGDRZ #big data #locality
- City-Scale Localization with Telco Big Data (FZ, CL, MY, YZ, ZZ, TG, KD, WR, JZ), pp. 439–448.
- CIKM-2016-LiCL #approximate #graph #query #using
- Approximating Graph Pattern Queries Using Views (JL, YC0, XL), pp. 449–458.
- CIKM-2016-ChenCSWT
- Group-Aware Weighted Bipartite B-Matching (CC0, SC, VS0, KW0, AT), pp. 459–468.
- CIKM-2016-AguinagaPCW #graph #graph grammar
- Growing Graphs from Hyperedge Replacement Graph Grammars (SA, RP, DC0, TW), pp. 469–478.
- CIKM-2016-LiuZGF #adaptation #graph #named #online
- GiraphAsync: Supporting Online and Offline Graph Processing via Adaptive Asynchronous Message Processing (YL, CZ, JG, ZF), pp. 479–488.
- CIKM-2016-LiuZCC #detection #graph #statistics #topic
- Graph Topic Scan Statistic for Spatial Event Detection (YL, BZ, FC0, DWC), pp. 489–498.
- CIKM-2016-GuoG #parametricity
- A Nonparametric Model for Event Discovery in the Geospatial-Temporal Space (JG, ZG), pp. 499–508.
- CIKM-2016-0064NRR #detection #framework #identification #learning #multi
- A Multiple Instance Learning Framework for Identifying Key Sentences and Detecting Events (WW0, YN, HR, NR), pp. 509–518.
- CIKM-2016-WenLP #named
- PairFac: Event Analytics through Discriminant Tensor Factorization (XW, YRL, KP), pp. 519–528.
- CIKM-2016-BansalEH #crowdsourcing
- Active Content-Based Crowdsourcing Task Selection (PB, CE, TH), pp. 529–538.
- CIKM-2016-QiuSCCK #behaviour #crowdsourcing #named #predict
- CrowdSelect: Increasing Accuracy of Crowdsourcing Tasks through Behavior Prediction and User Selection (CQ, ACS, BC, JC, DRK), pp. 539–548.
- CIKM-2016-KhanG
- Attribute-based Crowd Entity Resolution (ARK, HGM), pp. 549–558.
- CIKM-2016-LiCC0Y #performance #query
- Efficient Processing of Location-Aware Group Preference Queries (ML, LC, GC, YG0, GY0), pp. 559–568.
- CIKM-2016-HuSWXL #mining
- Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data (TH, RS, YW, XX0, JL), pp. 569–578.
- CIKM-2016-GuoS #analysis #behaviour #mobile #scalability #towards
- Large-Scale Analysis of Viewing Behavior: Towards Measuring Satisfaction with Mobile Proactive Systems (QG, YS), pp. 579–588.
- CIKM-2016-WuL #personalisation
- Where Did You Go: Personalized Annotation of Mobility Records (FW0, ZL), pp. 589–598.
- CIKM-2016-LagunMN #comprehension #mobile
- Understanding Mobile Searcher Attention with Rich Ad Formats (DL, DM, VN), pp. 599–608.
- CIKM-2016-NegiC #network #predict #social
- Link Prediction in Heterogeneous Social Networks (SN, SC), pp. 609–617.
- CIKM-2016-ZhangJGJC #smarttech
- Who are My Familiar Strangers?: Revealing Hidden Friend Relations and Common Interests from Smart Card Data (FZ, BJ, TG, QJ, YC), pp. 619–628.
- CIKM-2016-JangFKKH #information management #named #performance #trust
- PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and Negative Information (MHJ, CF, SWK, UK, JH), pp. 629–638.
- CIKM-2016-ImamoriT #predict #twitter
- Predicting Popularity of Twitter Accounts through the Discovery of Link-Propagating Early Adopters (DI, KT), pp. 639–648.
- CIKM-2016-YanSZW #chat #human-computer #online #quote #towards
- “Shall I Be Your Chat Companion?”: Towards an Online Human-Computer Conversation System (RY, YS, XZ, HW0), pp. 649–658.
- CIKM-2016-SongRVJ #automation
- To Click or Not To Click: Automatic Selection of Beautiful Thumbnails from Videos (YS, MR, JV, AJ), pp. 659–668.
- CIKM-2016-ChenNLXA #feedback #modelling #recommendation #scalability
- Separating-Plane Factorization Models: Scalable Recommendation from One-Class Implicit Feedback (HC, DN, KL, YX, MA), pp. 669–678.
- CIKM-2016-RenZRZYW #learning #optimisation #performance
- User Response Learning for Directly Optimizing Campaign Performance in Display Advertising (KR, WZ0, YR, HZ, YY0, JW0), pp. 679–688.
- CIKM-2016-Dumais #personalisation
- Personalized Search: Potential and Pitfalls (STD), p. 689.
- CIKM-2016-ZucconPH #information retrieval #query
- Query Variations and their Effect on Comparing Information Retrieval Systems (GZ, JRMP, AH), pp. 691–700.
- CIKM-2016-GuoFAC16a #information retrieval #semantics #word
- Semantic Matching by Non-Linear Word Transportation for Information Retrieval (JG, YF, QA, WBC), pp. 701–710.
- CIKM-2016-RekabsazLHZ #framework #modelling #probability
- Generalizing Translation Models in the Probabilistic Relevance Framework (NR, ML, AH, GZ), pp. 711–720.
- CIKM-2016-HagenVGS #axiom #ranking
- Axiomatic Result Re-Ranking (MH, MV, SG, BS0), pp. 721–730.
- CIKM-2016-MaxwellA #analysis #behaviour #performance
- Agents, Simulated Users and Humans: An Analysis of Performance and Behaviour (DM, LA), pp. 731–740.
- CIKM-2016-ZhangWW #enterprise
- Inspiration or Preparation?: Explaining Creativity in Scientific Enterprise (XZ, DW, TW), pp. 741–750.
- CIKM-2016-KimTSGY #mobile #web
- Pagination versus Scrolling in Mobile Web Search (JK, PT, RS, TG, HJY), pp. 751–760.
- CIKM-2016-Preotiuc-Pietro #behaviour #twitter
- Studying the Dark Triad of Personality through Twitter Behavior (DPP, JC, SG, LHU), pp. 761–770.
- CIKM-2016-ReinandaMR #documentation
- Document Filtering for Long-tail Entities (RR, EM, MdR), pp. 771–780.
- CIKM-2016-MishraB #modelling
- Estimating Time Models for News Article Excerpts (AM, KB), pp. 781–790.
- CIKM-2016-BairiUR #documentation #framework
- A Framework for Task-specific Short Document Expansion (RBB, RU, GR), pp. 791–800.
- CIKM-2016-BairiCR #categorisation #clustering #documentation
- Beyond Clustering: Sub-DAG Discovery for Categorising Documents (RBB, MJC, GR), pp. 801–810.
- CIKM-2016-LiKZH #classification #network #on the
- On Transductive Classification in Heterogeneous Information Networks (XL, BK, YZ, ZH0), pp. 811–820.
- CIKM-2016-YangY #performance #re-engineering
- Efficient Hidden Trajectory Reconstruction from Sparse Data (NY0, PSY), pp. 821–830.
- CIKM-2016-LeekaBBA #framework #named #performance #rdf
- Quark-X: An Efficient Top-K Processing Framework for RDF Quad Stores (JL, SB, DB, MA), pp. 831–840.
- CIKM-2016-ArabGKRG
- Reenactment for Read-Committed Snapshot Isolation (BSA, DG, VK, VR, BG), pp. 841–850.
- CIKM-2016-ZhangLMXLGS
- Influence-Aware Truth Discovery (HZ, QL0, FM, HX, YL, JG0, LS), pp. 851–860.
- CIKM-2016-WangSYLFXB #multi
- Truth Discovery via Exploiting Implications from Multi-Source Data (XW0, QZS, LY, XL0, XSF, XX, BB), pp. 861–870.
- CIKM-2016-SiddiquiRPH #corpus #documentation #named #scalability
- FacetGist: Collective Extraction of Document Facets in Large Technical Corpora (TS, XR, AGP, JH0), pp. 871–880.
- CIKM-2016-WangSYLFXB16a #multi #predict
- Empowering Truth Discovery with Multi-Truth Prediction (XW0, QZS, LY, XL0, XSF, XX, BB), pp. 881–890.
- CIKM-2016-Najork #email #experience #machine learning #using
- Using Machine Learning to Improve the Email Experience (MN), p. 891.
- CIKM-2016-MahajanKBPSKG #enterprise #hashtag #recommendation
- Hashtag Recommendation for Enterprise Applications (DM, VK, CB, SP, SS, SSK, JG), pp. 893–902.
- CIKM-2016-AmeriFCR #analysis #framework #predict #student
- Survival Analysis based Framework for Early Prediction of Student Dropouts (SA, MJF, RBC, CKR), pp. 903–912.
- CIKM-2016-SantuSZ #generative #mining #modelling
- Generative Feature Language Models for Mining Implicit Features from Customer Reviews (SKKS, PS, CZ), pp. 929–938.
- CIKM-2016-YuSHCH #analysis #data-driven #multi #quantifier #sentiment
- Data-Driven Contextual Valence Shifter Quantification for Multi-Theme Sentiment Analysis (HY, JS, MH, MC, JH0), pp. 939–948.
- CIKM-2016-WuWHHQ #adaptation #multi #sentiment
- Sentiment Domain Adaptation with Multi-Level Contextual Sentiment Knowledge (FW, SW, YH, SH, YQ), pp. 949–958.
- CIKM-2016-ParkFLZ #mobile #retrieval #social #social media
- Mobile App Retrieval for Social Media Users via Inference of Implicit Intent in Social Media Text (DHP, YF0, ML, CZ), pp. 959–968.
- CIKM-2016-ZhangSWQ #modelling #online #streaming
- Derivative Delay Embedding: Online Modeling of Streaming Time Series (ZZ, YS, WW0, HQ), pp. 969–978.
- CIKM-2016-Huang0WZW #named
- PISA: An Index for Aggregating Big Time Series Data (XH, JW0, RKW, JZ, CW0), pp. 979–988.
- CIKM-2016-LiLF #approach #classification #multi
- Multi-View Time Series Classification: A Discriminative Bilinear Projection Approach (SL0, YL, YF0), pp. 989–998.
- CIKM-2016-DauBK #clustering
- Semi-Supervision Dramatically Improves Time Series Clustering under Dynamic Time Warping (HAD, NB, EJK), pp. 999–1008.
- CIKM-2016-GongC #classification #modelling #sequence
- Model-Based Oversampling for Imbalanced Sequence Classification (ZG, HC), pp. 1009–1018.
- CIKM-2016-WangPVR #named #predict
- CRISP: Consensus Regularized Selection based Prediction (PW, KKP, BV, CKR), pp. 1019–1028.
- CIKM-2016-ZhengC #classification #constraints #learning #probability
- Regularizing Structured Classifier with Conditional Probabilistic Constraints for Semi-supervised Learning (VWZ, KCCC), pp. 1029–1038.
- CIKM-2016-CormackG #classification #learning #reliability #scalability
- Scalability of Continuous Active Learning for Reliable High-Recall Text Classification (GVC, MRG), pp. 1039–1048.
- CIKM-2016-VieiraSCCM #e-commerce #effectiveness #social #social media #towards
- Towards the Effective Linking of Social Media Contents to Products in E-Commerce Catalogs (HSV, ASdS, PC, MC, ESdM), pp. 1049–1058.
- CIKM-2016-HoangL #social #social media
- Tracking Virality and Susceptibility in Social Media (TAH, EPL), pp. 1059–1068.
- CIKM-2016-MishraRX #predict #process
- Feature Driven and Point Process Approaches for Popularity Prediction (SM, MAR, LX), pp. 1069–1078.
- CIKM-2016-FanFYZ #adaptation #realtime #twitter
- Adaptive Evolutionary Filtering in Real-Time Twitter Stream (FF, YF, LY, DZ0), pp. 1079–1088.
- CIKM-2016-LiRM #multi #query
- Multiple Queries as Bandit Arms (CL0, PR, QM), pp. 1089–1098.
- CIKM-2016-BoytsovNMN #retrieval
- Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search (LB, DN, YM, EN), pp. 1099–1108.
- CIKM-2016-PhamP #performance #scalability
- Scalability and Total Recall with Fast CoveringLSH (NP, RP), pp. 1109–1118.
- CIKM-2016-DaiXC #clustering
- Query-Biased Partitioning for Selective Search (ZD, CX, JC), pp. 1119–1128.
- CIKM-2016-GhoshCCBR #approach #word
- Characterizing Diseases from Unstructured Text: A Vocabulary Driven Word2vec Approach (SG, PC, EC, JSB, NR), pp. 1129–1138.
- CIKM-2016-OrdentlichYFCGD #distributed #scalability #word
- Network-Efficient Distributed Word2vec Training System for Large Vocabularies (EO, LY, AF, PC, MG, ND, VR, GO), pp. 1139–1148.
- CIKM-2016-Broder #web
- A Personal Perspective and Retrospective on Web Search Technology (AZB), p. 1149.
- CIKM-2016-CheungL #learning #rank #robust #scalability
- Scalable Spectral k-Support Norm Regularization for Robust Low Rank Subspace Learning (YmC, JL), pp. 1151–1160.
- CIKM-2016-LiuHZSL #adaptation #matrix #online
- Online Adaptive Passive-Aggressive Methods for Non-Negative Matrix Factorization and Its Applications (CL, SCHH, PZ, JS, EPL), pp. 1161–1170.
- CIKM-2016-0001H #adaptation #interactive #learning #multi #named #using
- aptMTVL: Nailing Interactions in Multi-Task Multi-View Multi-Label Learning using Adaptive-basis Multilinear Factor Analyzers (XL0, JH), pp. 1171–1180.
- CIKM-2016-ChandraHKA #adaptation #classification #framework #multi
- An Adaptive Framework for Multistream Classification (SC, AH, LK, CCA), pp. 1181–1190.
- CIKM-2016-Razniewski #optimisation
- Optimizing Update Frequencies for Decaying Information (SR), pp. 1191–1200.
- CIKM-2016-CarboneTKHM #named
- Cutty: Aggregate Sharing for User-Defined Windows (PC, JT, AK, SH, VM), pp. 1201–1210.
- CIKM-2016-LinkP #database #design #nondeterminism #relational
- Relational Database Schema Design for Uncertain Data (SL, HP), pp. 1211–1220.
- CIKM-2016-HuangCS #composition #named #refinement
- BICP: Block-Incremental CP Decomposition with Update Sensitive Refinement (SH, KSC, MLS), pp. 1221–1230.
- CIKM-2016-BandyopadhyayFC #graph #incremental #scalability #sketching
- Topological Graph Sketching for Incremental and Scalable Analytics (BB, DF, AC, SP0), pp. 1231–1240.
- CIKM-2016-HuWCLF #graph #query #scalability
- Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs (JH, XW, RC, SL, YF), pp. 1241–1250.
- CIKM-2016-EtemadiLT #estimation #graph #performance #scalability
- Efficient Estimation of Triangles in Very Large Graphs (RE, JL, YHT), pp. 1251–1260.
- CIKM-2016-ChenLYWLZ #graph #keyword #multi #performance #query
- Efficient Batch Processing for Multiple Keyword Queries on Graph Data (LC, CL, XY0, BW0, JL, RZ0), pp. 1261–1270.
- CIKM-2016-YanXGHW #multimodal #retrieval #robust
- Supervised Robust Discrete Multimodal Hashing for Cross-Media Retrieval (TKY, XSX, SG, ZH, XW), pp. 1271–1280.
- CIKM-2016-RoyGMJ #composition #estimation #feedback #kernel #using #word
- Word Vector Compositionality based Relevance Feedback using Kernel Density Estimation (DR, DG, MM, GJFJ), pp. 1281–1290.
- CIKM-2016-0003LRA #performance
- Q+Tree: An Efficient Quad Tree based Data Indexing for Parallelizing Dynamic and Reverse Skylines (MSI0, CL, JWR, TA), pp. 1291–1300.
- CIKM-2016-DehghaniAKHM #modelling #word
- Luhn Revisited: Significant Words Language Models (MD0, HA, JK, DH, MM), pp. 1301–1310.
- CIKM-2016-SeufertBBKEW #named #set
- ESPRESSO: Explaining Relationships between Entity Sets (SS, KB, SJB, SKK, PE, GW), pp. 1311–1320.
- CIKM-2016-RafieiR #documentation #online
- Geotagging Named Entities in News and Online Documents (JYR, DR), pp. 1321–1330.
- CIKM-2016-SinghHA
- Discovering Entities with Just a Little Help from You (JS, JH, AA), pp. 1331–1340.
- CIKM-2016-ZhangDH #ambiguity #case study #classification #online #using
- Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams (BZ, MD, MAH), pp. 1341–1350.
- CIKM-2016-Jin #e-commerce #online #robust #scalability
- Large-scale Robust Online Matching and Its Application in E-commerce (RJ), p. 1351.
- CIKM-2016-HoLSKDWZS #algorithm #behaviour #distributed #graph #scalability
- A Distributed Graph Algorithm for Discovering Unique Behavioral Groups from Large-Scale Telco Data (QH, WL, ES, SK, TAD, JW, ICZ, ASN), pp. 1353–1362.
- CIKM-2016-ZhengWPYFX #big data #predict #using
- Urban Traffic Prediction through the Second Use of Inexpensive Big Data from Buildings (ZZ, DW0, JP, YY, CF, LFX), pp. 1363–1372.
- CIKM-2016-JiWZ #multi #online #probability
- A Probabilistic Multi-Touch Attribution Model for Online Advertising (WJ, XW, DZ), pp. 1373–1382.
- CIKM-2016-TangY #optimisation #social
- Optimizing Ad Allocation in Social Advertising (ST, JY0), pp. 1383–1392.
- CIKM-2016-RafailidisC #collaboration #ranking #recommendation #social
- Joint Collaborative Ranking with Social Relationships in Top-N Recommendation (DR, FC), pp. 1393–1402.
- CIKM-2016-StojanovicGO #modelling
- Modeling Customer Engagement from Partial Observations (JS, DG, ZO), pp. 1403–1412.
- CIKM-2016-LiSCS #adaptation #effectiveness #on the #query #rank
- On the Effectiveness of Query Weighting for Adapting Rank Learners to New Unlabelled Collections (PL, MS, MJC, FS), pp. 1413–1422.
- CIKM-2016-KraviGMCMPT #analysis #multi #query
- One Query, Many Clicks: Analysis of Queries with Multiple Clicks by the Same User (EK, IG, AM, DC, YM, DP, GT), pp. 1423–1432.
- CIKM-2016-KongA #query
- Precision-Oriented Query Facet Extraction (WK, JA), pp. 1433–1442.
- CIKM-2016-HeTOKYC #learning #query
- Learning to Rewrite Queries (YH, JT, HO, CK, DY, YC), pp. 1443–1452.
- CIKM-2016-AnderssonLPHR #natural language #question #retrieval
- When is the Time Ripe for Natural Language Processing for Patent Passage Retrieval? (LA, ML, JRMP, AH, AR), pp. 1453–1462.
- CIKM-2016-AnavaSKR #framework #probability
- A Probabilistic Fusion Framework (YA, AS, OK, ER), pp. 1463–1472.
- CIKM-2016-LeviRKG #clustering #documentation #retrieval
- Selective Cluster-Based Document Retrieval (OL, FR, OK, IG), pp. 1473–1482.
- CIKM-2016-ZamaniDSC #feedback #matrix #pseudo
- Pseudo-Relevance Feedback Based on Matrix Factorization (HZ, JD, AS, WBC), pp. 1483–1492.
- CIKM-2016-GeCZS
- Uncovering the Spatio-Temporal Dynamics of Memes in the Presence of Incomplete Information (HG, JC, NZ, ACS), pp. 1493–1502.
- CIKM-2016-ChenDWST #data mining #mining #recommendation
- From Recommendation to Profile Inference (Rec2PI): A Value-added Service to Wi-Fi Data Mining (CC0, FD, KW0, VS0, AT), pp. 1503–1512.
- CIKM-2016-FanWL #analysis #metric #mobile #network #on the #optimisation
- On Backup Battery Data in Base Stations of Mobile Networks: Measurement, Analysis, and Optimization (XF, FW0, JL), pp. 1513–1522.
- CIKM-2016-LiKR #automation #generative #roadmap #set #validation
- Automatic Generation and Validation of Road Maps from GPS Trajectory Data Sets (HL, LK, KR), pp. 1523–1532.
- CIKM-2016-0002AK #distance #network #query
- Fully Dynamic Shortest-Path Distance Query Acceleration on Massive Networks (TH0, TA, KiK), pp. 1533–1542.
- CIKM-2016-AkibaYM
- Hierarchical and Dynamic k-Path Covers (TA, YY, NM), pp. 1543–1552.
- CIKM-2016-ChenWPT #community #network #performance #using
- Efficient Computation of Importance Based Communities in Web-Scale Networks Using a Single Machine (SC, RW, DP, AT), pp. 1553–1562.
- CIKM-2016-ZhangYZZ #classification #matrix #network
- Collective Classification via Discriminative Matrix Factorization on Sparsely Labeled Networks (DZ, JY, XZ, CZ), pp. 1563–1572.
- CIKM-2016-HamooniDXZJM #named #pattern matching #pattern recognition #performance #recognition
- LogMine: Fast Pattern Recognition for Log Analytics (HH, BD, JX, HZ0, GJ, AM), pp. 1573–1582.
- CIKM-2016-ZhongSLR #parametricity #scalability
- Scaling Factorization Machines with Parameter Server (EZ, YS, NL, SR), pp. 1583–1592.
- CIKM-2016-LiZZWZWXHWZLCR #analysis #delivery #framework #named #performance #platform
- DI-DAP: An Efficient Disaster Information Delivery and Analysis Platform in Disaster Management (TL0, WZ, CZ, QW, QZ, DW0, JX0, YH, WW0, MZ, SL, SCC, NR), pp. 1593–1602.
- CIKM-2016-SuZBTM #approximate
- Approximate Aggregates in Oracle 12C (HS, MZ, VB, JT, ACM), pp. 1603–1612.
- CIKM-2016-WangWY #correlation #feature model
- Supervised Feature Selection by Preserving Class Correlation (JW0, JW, ZY), pp. 1613–1622.
- CIKM-2016-ZhangMGJA #named
- CGMOS: Certainty Guided Minority OverSampling (XZ, DM, LG, SJ, GA), pp. 1623–1631.
- CIKM-2016-WangWW #learning
- Learning Hidden Features for Contextual Bandits (HW, QW, HW), pp. 1633–1642.
- CIKM-2016-ZhaoK #learning #online #rank #reliability
- Constructing Reliable Gradient Exploration for Online Learning to Rank (TZ, IK), pp. 1643–1652.
- CIKM-2016-RongZC #approach #network
- A Model-Free Approach to Infer the Diffusion Network from Event Cascade (YR, QZ, HC), pp. 1653–1662.
- CIKM-2016-NguyenGMD #identification #multi
- Multiple Infection Sources Identification with Provable Guarantees (HTN0, PG, MLM, TND), pp. 1663–1672.
- CIKM-2016-ZhangYLZ #information management
- Information Diffusion at Workplace (JZ, PSY, YL, QZ), pp. 1673–1682.
- CIKM-2016-SongHL #network #social
- Targeted Influence Maximization in Social Networks (CS, WH, MLL), pp. 1683–1692.
- CIKM-2016-VesdapuntG #api #graph #social
- Updating an Existing Social Graph Snapshot via a Limited API (NV, HGM), pp. 1693–1702.
- CIKM-2016-IbrahimRW #web
- Making Sense of Entities and Quantities in Web Tables (YI, MR, GW), pp. 1703–1712.
- CIKM-2016-OuCC #question #why
- Influence Maximization for Complementary Goods: Why Parties Fail to Cooperate? (HCO, CKC, MSC), pp. 1713–1722.
- CIKM-2016-HanadaPCL #effectiveness #fault #type system #using
- Effective Spelling Correction for Eye-based Typing using domain-specific Information about Error Distribution (RH, MdGCP, MC, FAL), pp. 1723–1732.
- CIKM-2016-HanusseWM
- Computing and Summarizing the Negative Skycube (NH, PKW, SM), pp. 1733–1742.
- CIKM-2016-ZhangTSYS #matrix #orthogonal #performance
- Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold (WEZ, MT, QZS, LY, QS), pp. 1743–1752.
- CIKM-2016-WangTML #linked data #open data #strict
- Paired Restricted Boltzmann Machine for Linked Data (SW, JT, FM, HL0), pp. 1753–1762.
- CIKM-2016-ZhangZYRY #convergence
- LDA Revisited: Entropy, Prior and Convergence (JZ, JZ, MY, WR, JY), pp. 1763–1772.
- CIKM-2016-FangZWFZZ #algorithm #effectiveness
- Cost-Effective Stream Join Algorithm on Cloud System (JF, RZ0, XW, TZJF, ZZ, AZ), pp. 1773–1782.
- CIKM-2016-RossiZ #multi #network #scalability
- Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks (RAR, RZ0), pp. 1783–1792.
- CIKM-2016-ZhangLDCKS #big data #locality #privacy #scalability #using
- Scalable Local-Recoding Anonymization using Locality Sensitive Hashing for Big Data Privacy Preservation (XZ, CL, WD, JC, KR, ZS), pp. 1793–1802.
- CIKM-2016-BleifussBFRW0PN #approximate #dataset #dependence #functional #scalability
- Approximate Discovery of Functional Dependencies for Large Datasets (TB, SB, JF, JR, GW, SK0, TP, FN), pp. 1803–1812.
- CIKM-2016-CheemaKALWCR #analysis #health #monitoring #on the #using
- On Structural Health Monitoring Using Tensor Analysis and Support Vector Machine with Artificial Negative Data (PC, NLDK, MMA, WL0, YW0, FC0, PR), pp. 1813–1822.
- CIKM-2016-Wang0PB #algorithm #cpu #detection #online #self
- A Self-Learning and Online Algorithm for Time Series Anomaly Detection, with Application in CPU Manufacturing (XW0, JL0, NP, MB), pp. 1823–1832.
- CIKM-2016-TongKIKSV #using
- Deep Match between Geology Reports and Well Logs Using Spatial Information (BT, MK, MI, YK, AS, RV), pp. 1833–1842.
- CIKM-2016-ShaabaniASS #named #synthesis #tool support
- MIST: Missing Person Intelligence Synthesis Toolkit (ES, HA, PS, JEKS), pp. 1843–1867.
- CIKM-2016-MengLLS #framework #representation #word
- Skipping Word: A Character-Sequential Representation based Framework for Question Answering (LM, YL, ML, PS), pp. 1869–1872.
- CIKM-2016-Khan #towards
- Towards Time-Discounted Influence Maximization (AK), pp. 1873–1876.
- CIKM-2016-YanoTT #ambiguity #query #topic
- Quantifying Query Ambiguity with Topic Distributions (YY, YT, AT), pp. 1877–1880.
- CIKM-2016-CaoY #benchmark #dataset #metric #modelling #named #network #platform #social
- ASNets: A Benchmark Dataset of Aligned Social Networks for Cross-Platform User Modeling (XC, YY0), pp. 1881–1884.
- CIKM-2016-JoHJBK #graph #locality
- Data Locality in Graph Engines: Implications and Preliminary Experimental Results (YYJ, JH, MHJ, JGB, SWK), pp. 1885–1888.
- CIKM-2016-XieWY #learning
- Active Zero-Shot Learning (SX, SW, PSY), pp. 1889–1892.
- CIKM-2016-KhabsaCAZAW #learning #metric
- Learning to Account for Good Abandonment in Search Success Metrics (MK, ACC, AHA, IZ, TA, KW), pp. 1893–1896.
- CIKM-2016-Bao #modelling #predict #process #self
- Modeling and Predicting Popularity Dynamics via an Influence-based Self-Excited Hawkes Process (PB), pp. 1897–1900.
- CIKM-2016-ChenZH #network
- Incorporate Group Information to Enhance Network Embedding (JC, QZ0, XH), pp. 1901–1904.
- CIKM-2016-ZengZMZW #clustering #network #predict
- Exploiting Cluster-based Meta Paths for Link Prediction in Signed Networks (JZ, KZ0, XM, FZ, HW), pp. 1905–1908.
- CIKM-2016-JatowtKT #predict #using #wiki
- Predicting Importance of Historical Persons using Wikipedia (AJ, DK, KT), pp. 1909–1912.
- CIKM-2016-RaoHL #estimation #network
- Noise-Contrastive Estimation for Answer Selection with Deep Neural Networks (JR, HH, JJL), pp. 1913–1916.
- CIKM-2016-ZhangWYLLZ #recommendation #social
- Global and Local Influence-based Social Recommendation (QZ, JW0, HY, WL, GL, CZ), pp. 1917–1920.
- CIKM-2016-XuCLMM #personalisation #recommendation #semantics #similarity #using
- Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling (ZX, CC0, TL, YM, XM), pp. 1921–1924.
- CIKM-2016-EbrahimiD #personalisation #semantics #word
- Personalized Semantic Word Vectors (JE, DD), pp. 1925–1928.
- CIKM-2016-KuziSK #query #using #word
- Query Expansion Using Word Embeddings (SK, AS, OK), pp. 1929–1932.
- CIKM-2016-WangWZ #distributed #graph #partial evaluation #performance #query #rdf #using
- Efficient Distributed Regular Path Queries on RDF Graphs Using Partial Evaluation (XW0, JW, XZ), pp. 1933–1936.
- CIKM-2016-WangKBC #predict
- Webpage Depth-level Dwell Time Prediction (CW, AK, CB, YC0), pp. 1937–1940.
- CIKM-2016-GaoWQZYH #collaboration #recommendation #social
- Collaborative Social Group Influence for Event Recommendation (LG, JW0, ZQ, CZ0, HY, YH0), pp. 1941–1944.
- CIKM-2016-ZhengW #graph #learning #multi
- Graph-Based Multi-Modality Learning for Clinical Decision Support (ZZ, XW0), pp. 1945–1948.
- CIKM-2016-Liu0 #approach #twitter
- Where are You Tweeting?: A Context and User Movement Based Approach (ZL, YH0), pp. 1949–1952.
- CIKM-2016-HansenLM #predict #query #using #web
- Ensemble Learned Vaccination Uptake Prediction using Web Search Queries (NDH, CL, KM), pp. 1953–1956.
- CIKM-2016-LuQZHG #approach #network #recommendation #social
- Location-aware Friend Recommendation in Event-based Social Networks: A Bayesian Latent Factor Approach (YL, ZQ, CZ0, YH0, LG0), pp. 1957–1960.
- CIKM-2016-Shankaralingappa #communication
- Extracting Skill Endorsements from Personal Communication Data (DMS, GDFM, AG), pp. 1961–1964.
- CIKM-2016-ManshaKKA #identification #network #self #speech
- A Self-Organizing Map for Identifying InfluentialCommunities in Speech-based Networks (SM, FK, AK, AA), pp. 1965–1968.
- CIKM-2016-HuangWW #predict
- Crowdsourcing-based Urban Anomaly Prediction System for Smart Cities (CH0, XW, DW0), pp. 1969–1972.
- CIKM-2016-Duong-TrungSS #matrix #predict #realtime #twitter
- Near Real-time Geolocation Prediction in Twitter Streams via Matrix Factorization Based Regression (NDT, NS, LST), pp. 1973–1976.
- CIKM-2016-MouJXL0J #approach #encoding #word
- Distilling Word Embeddings: An Encoding Approach (LM, RJ, YX, GL, LZ0, ZJ), pp. 1977–1980.
- CIKM-2016-ManotumruksaMO #modelling #recommendation #using
- Regularising Factorised Models for Venue Recommendation using Friends and their Comments (JM, CM, IO), pp. 1981–1984.
- CIKM-2016-MoshfeghiVT #query
- Improving Search Results with Prior Similar Queries (YM, KV, PT), pp. 1985–1988.
- CIKM-2016-LipaniLKH #documentation
- The Solitude of Relevant Documents in the Pool (AL, ML, EK, AH), pp. 1989–1992.
- CIKM-2016-LuCL #mining #recommendation #topic #video
- Scarce Feature Topic Mining for Video Recommendation (WL0, KFLC, KL), pp. 1993–1996.
- CIKM-2016-MartinoBR0M #community #learning #using
- Learning to Re-Rank Questions in Community Question Answering Using Advanced Features (GDSM, ABC, SR, AU0, AM), pp. 1997–2000.
- CIKM-2016-DeveaudMN #learning #rank
- Learning to Rank System Configurations (RD, JM, JYN), pp. 2001–2004.
- CIKM-2016-PetersenSJL #adaptation #ranking
- Adaptive Distributional Extensions to DFR Ranking (CP, JGS, KJ, CL), pp. 2005–2008.
- CIKM-2016-Grushka-CohenSB #assessment #database #elicitation #named #risk management #security
- CyberRank: Knowledge Elicitation for Risk Assessment of Database Security (HGC, OS, OB, BS, LR), pp. 2009–2012.
- CIKM-2016-KusmierczykN #online #semantics #topic
- Online Food Recipe Title Semantics: Combining Nutrient Facts and Topics (TK, KN), pp. 2013–2016.
- CIKM-2016-ZhangMZ #parametricity #topic #word
- A Non-Parametric Topic Model for Short Texts Incorporating Word Coherence Knowledge (YZ, WM, DDZ), pp. 2017–2020.
- CIKM-2016-RuanSXTFLZ #network #using
- Forecasting Seasonal Time Series Using Weighted Gradient RBF Network based Autoregressive Model (WR, QZS, PX, NKT0, NJGF, XL0, WEZ), pp. 2021–2024.
- CIKM-2016-RuanXSTFLZ #approach
- When Sensor Meets Tensor: Filling Missing Sensor Values Through a Tensor Approach (WR, PX, QZS, NKT0, NJGF, XL0, WEZ), pp. 2025–2028.
- CIKM-2016-SikchiGD #aspect-oriented #e-commerce #named
- PEQ: An Explainable, Specification-based, Aspect-oriented Product Comparator for E-commerce (AS, PG, SD), pp. 2029–2032.
- CIKM-2016-JiangL #network
- Forecasting Geo-sensor Data with Participatory Sensing Based on Dropout Neural Network (JYJ, CTL), pp. 2033–2036.
- CIKM-2016-SinghC #aspect-oriented #query #using
- Iterative Search using Query Aspects (MS, WBC), pp. 2037–2040.
- CIKM-2016-GhoshGA #approach
- A Preference Approach to Reputation in Sponsored Search (AG, DG, RA), pp. 2041–2044.
- CIKM-2016-ZhangTL #clustering #multi #network
- Clustering Speed in Multi-lane Traffic Networks (BZ, GT, FL), pp. 2045–2048.
- CIKM-2016-TymoshenkoBM #learning #rank #web
- Learning to Rank Non-Factoid Answers: Comment Selection in Web Forums (KT, DB, AM), pp. 2049–2052.
- CIKM-2016-BonabC #classification #data type #framework #online
- A Theoretical Framework on the Ideal Number of Classifiers for Online Ensembles in Data Streams (HRB, FC), pp. 2053–2056.
- CIKM-2016-PiaoB #concept #modelling #personalisation #recommendation #twitter
- User Modeling on Twitter with WordNet Synsets and DBpedia Concepts for Personalized Recommendations (GP, JGB), pp. 2057–2060.
- CIKM-2016-FoleyOA #keyword #query #ranking
- Improving Entity Ranking for Keyword Queries (JF, BO, JA), pp. 2061–2064.
- CIKM-2016-DehghaniAK #documentation #feedback #power of
- The Healing Power of Poison: Helpful Non-relevant Documents in Feedback (MD0, SA, JK), pp. 2065–2068.
- CIKM-2016-JangFDA #detection #probability
- Probabilistic Approaches to Controversy Detection (MJ, JF, SDH, JA), pp. 2069–2072.
- CIKM-2016-AlkhawaldehJP #clustering #documentation #information retrieval
- Evaluating Document Retrieval Methods for Resource Selection in Clustered P2P IR (RSA, JMJ, DP0), pp. 2073–2076.
- CIKM-2016-TutekGSMB #concept #detection #knowledge base #ranking #using
- Detecting and Ranking Conceptual Links between Texts Using a Knowledge Base (MT, GG, JS, NMF, BDB), pp. 2077–2080.
- CIKM-2016-SuyehiraS #detection #named #wiki
- DePP: A System for Detecting Pages to Protect in Wikipedia (KS, FS), pp. 2081–2084.
- CIKM-2016-LiSNLF #hashtag #learning #rank #recommendation #topic #twitter
- Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank (QL, SS, AN, XL, RF), pp. 2085–2088.
- CIKM-2016-LeeKYLK #comparison #framework #pipes and filters
- An Experimental Comparison of Iterative MapReduce Frameworks (HL, MK, SBY, JGL0, YK), pp. 2089–2094.
- CIKM-2016-WuJ #approach #clustering #retrieval
- A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters (DW0, CSJ), pp. 2095–2100.
- CIKM-2016-KangPYC #graph #recommendation
- Top-N Recommendation on Graphs (ZK, CP, MY, QC), pp. 2101–2106.
- CIKM-2016-HuangCCZ #query #recommendation
- KB-Enabled Query Recommendation for Long-Tail Queries (ZH0, BC, RC, YZ), pp. 2107–2112.
- CIKM-2016-PengKYC #matrix #named #rank #scalability
- RAP: Scalable RPCA for Low-rank Matrix Recovery (CP, ZK, MY, QC), pp. 2113–2118.
- CIKM-2016-MaSCYKV #distributed #network #performance #query
- Query Answering Efficiency in Expert Networks Under Decentralized Search (LM0, MS, DC, XY, SK, MV), pp. 2119–2124.
- CIKM-2016-Ekstrand-AbuegM #case study #metric #realtime #summary
- A Study of Realtime Summarization Metrics (MEA, RM, VP, FD0), pp. 2125–2130.
- CIKM-2016-HanYYGG #mobile #query #sequence
- Framing Mobile Information Needs: An Investigation of Hierarchical Query Sequence Structure (SH, XY, ZY, ZG, AG), pp. 2131–2136.
- CIKM-2016-JinFF #approach #collaboration #detection
- A Context-aware Collaborative Filtering Approach for Urban Black Holes Detection (LJ, ZF, LF), pp. 2137–2142.
- CIKM-2016-LinCWC #optimisation #predict #realtime
- Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget (CCL, KTC, WCHW, MSC), pp. 2143–2148.
- CIKM-2016-DoanL #contest #towards
- Attractiveness versus Competition: Towards an Unified Model for User Visitation (TND, EPL), pp. 2149–2154.
- CIKM-2016-LiPC #benchmark #metric #named #query #tool support
- OptMark: A Toolkit for Benchmarking Query Optimizers (ZL, OP, MC), pp. 2155–2160.
- CIKM-2016-BrostSCL #evaluation #multi #online
- Multi-Dueling Bandits and Their Application to Online Ranker Evaluation (BB, YS, IJC, CL), pp. 2161–2166.
- CIKM-2016-LiangP #detection #robust
- Robust Contextual Outlier Detection: Where Context Meets Sparsity (JL, SP0), pp. 2167–2172.
- CIKM-2016-PopatMSW #assessment #web
- Credibility Assessment of Textual Claims on the Web (KP, SM, JS, GW), pp. 2173–2178.
- CIKM-2016-LiuKL #predict #social #social media #using
- Collective Traffic Prediction with Partially Observed Traffic History using Location-Based Social Media (XL, XK, YL), pp. 2179–2184.
- CIKM-2016-SubbianAH #recommendation #streaming
- Recommendations For Streaming Data (KS, CCA, KH), pp. 2185–2190.
- CIKM-2016-ZhuangLRE #named #optimisation #query
- PRO: Preference-Aware Recurring Query Optimization (ZZ, CL, EAR, MYE), pp. 2191–2196.
- CIKM-2016-LuoLKBC
- Discovering Temporal Purchase Patterns with Different Responses to Promotions (LL, BL0, IK, SB, FC0), pp. 2197–2202.
- CIKM-2016-WeiWWLX #hybrid #named #predict
- ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service (HW, YW, TW, YL, JX0), pp. 2203–2208.
- CIKM-2016-KangLAC #algorithm #clustering
- A Filtering-based Clustering Algorithm for Improving Spatio-temporal Kriging Interpolation Accuracy (QK, WkL, AA, ANC), pp. 2209–2214.
- CIKM-2016-Camacho-Rodriguez #optimisation
- Reuse-based Optimization for Pig Latin (JCR, DC, MH, IM, SRC), pp. 2215–2220.
- CIKM-2016-AmandH #learning
- Discriminative View Learning for Single View Co-Training (JSA, JH), pp. 2221–2226.
- CIKM-2016-ChenOX #learning #recommendation
- Learning Points and Routes to Recommend Trajectories (DC, CSO, LX), pp. 2227–2232.
- CIKM-2016-ChodpathumwanAT #database #graph #independence #representation #similarity #towards
- Towards Representation Independent Similarity Search Over Graph Databases (YC, AA, AT, YS), pp. 2233–2238.
- CIKM-2016-TsukudaHG #modelling #order #why
- Why Did You Cover That Song?: Modeling N-th Order Derivative Creation with Content Popularity (KT, MH, MG), pp. 2239–2244.
- CIKM-2016-SikdarMGM #case study #energy #physics
- Anomalies in the Peer-review System: A Case Study of the Journal of High Energy Physics (SS, MM, NG, AM0), pp. 2245–2250.
- CIKM-2016-ZhangXLGFY #multi #predict
- Multi-source Hierarchical Prediction Consolidation (CZ, SX, YL, JG0, WF0, PSY), pp. 2251–2256.
- CIKM-2016-KimXO #composition #graph #incremental #probability
- Probabilistic Knowledge Graph Construction: Compositional and Incremental Approaches (DK0, LX, CSO), pp. 2257–2262.
- CIKM-2016-GiachanouMC #sentiment #twitter
- Explaining Sentiment Spikes in Twitter (AG, IM, FC), pp. 2263–2268.
- CIKM-2016-KohlerL #nondeterminism
- Qualitative Cleaning of Uncertain Data (HK, SL), pp. 2269–2274.
- CIKM-2016-YiLW #adaptation #evaluation #hybrid #latency #named
- APAM: Adaptive Eager-Lazy Hybrid Evaluation of Event Patterns for Low Latency (IY, JGL0, KYW), pp. 2275–2280.
- CIKM-2016-WangMGWY #data type #distributed #framework #named #resource management
- OrientStream: A Framework for Dynamic Resource Allocation in Distributed Data Stream Management Systems (CW, XM0, QG, ZW, CY), pp. 2281–2286.
- CIKM-2016-Wu0XTL #named #recommendation #using #word
- Tag2Word: Using Tags to Generate Words for Content Based Tag Recommendation (YW, YY0, FX0, HT, JL0), pp. 2287–2292.
- CIKM-2016-ShiLBX #multi #topic
- Digesting Multilingual Reader Comments via Latent Discussion Topics with Commonality and Specificity (BS, WL, LB, YX), pp. 2293–2298.
- CIKM-2016-ShiL #fine-grained
- Digesting News Reader Comments via Fine-Grained Associations with Event Facets and News Contents (BS, WL), pp. 2299–2304.
- CIKM-2016-RajasekaranS #algorithm #performance #problem
- Efficient Algorithms for the Two Locus Problem in Genome-Wide Association Study: Algorithms for the Two Locus Problem (SR, SS), pp. 2305–2310.
- CIKM-2016-Niebler0ZDH #behaviour #named #navigation #social
- FolkTrails: Interpreting Navigation Behavior in a Social Tagging System (TN, MB0, DZ, SD, AH), pp. 2311–2316.
- CIKM-2016-LiakosPD #distributed #graph #novel
- Memory-Optimized Distributed Graph Processing through Novel Compression Techniques (PL, KP, AD), pp. 2317–2322.
- CIKM-2016-AnwarLV0 #evolution #network
- Tracking the Evolution of Congestion in Dynamic Urban Road Networks (TA, CL, HLV, MSI0), pp. 2323–2328.
- CIKM-2016-RongZYSL #approach #markov #optimisation #performance #process
- The Rich and the Poor: A Markov Decision Process Approach to Optimizing Taxi Driver Revenue Efficiency (HR, XZ, CY, MZS, AXL), pp. 2329–2334.
- CIKM-2016-ZhuangLPXH #adaptation #learning
- Ensemble of Anchor Adapters for Transfer Learning (FZ, PL0, SJP, HX, QH), pp. 2335–2340.
- CIKM-2016-WangH #database #incremental #mining
- Incremental Mining of High Utility Sequential Patterns in Incremental Databases (JZW, JLH), pp. 2341–2346.
- CIKM-2016-UfimtsevSMB #comprehension #metric #network
- Understanding Stability of Noisy Networks through Centrality Measures and Local Connections (VU, SS, AM0, SB), pp. 2347–2352.
- CIKM-2016-SadriMY #adaptation #online #topic #twitter
- Online Adaptive Topic Focused Tweet Acquisition (MS, SM, YY), pp. 2353–2358.
- CIKM-2016-BaruahZGLSV #learning #optimisation
- Optimizing Nugget Annotations with Active Learning (GB, HZ0, RG, JJL, MDS, OV), pp. 2359–2364.
- CIKM-2016-SatyaLLTZ #network #online #social
- Uncovering Fake Likers in Online Social Networks (PRBS, KL, DL0, TT, J(Z), pp. 2365–2370.
- CIKM-2016-WangCP
- Where to Place Your Next Restaurant?: Optimal Restaurant Placement via Leveraging User-Generated Reviews (FW0, LC0, WP), pp. 2371–2376.
- CIKM-2016-SampsonMWL #detection #social #social media
- Leveraging the Implicit Structure within Social Media for Emergent Rumor Detection (JS, FM, LW0, HL0), pp. 2377–2382.
- CIKM-2016-HuaZWLR #generative #twitter
- Automatical Storyline Generation with Help from Twitter (TH, XZ, WW0, CTL, NR), pp. 2383–2388.
- CIKM-2016-SpirinKKMI #case study #comparative #mobile
- A Comparative Study of Query-biased and Non-redundant Snippets for Structured Search on Mobile Devices (NVS, ASK, KGK, VM, PAI), pp. 2389–2394.
- CIKM-2016-AlabdulmohsinHS #detection #graph
- Content-Agnostic Malware Detection in Heterogeneous Malicious Distribution Graph (IMA, YH, YS, XZ0), pp. 2395–2400.
- CIKM-2016-WangLL #recommendation
- Improving Advertisement Recommendation by Enriching User Browser Cookie Attributes (LW, KcL, QL), pp. 2401–2404.
- CIKM-2016-BrayteeCKL #matrix
- Balanced Supervised Non-Negative Matrix Factorization for Childhood Leukaemia Patients (AB, DRC, PJK, WL0), pp. 2405–2408.
- CIKM-2016-NguyenTTN #dataset #named #social #summary
- SoLSCSum: A Linked Sentence-Comment Dataset for Social Context Summarization (MTN, CXT, DVT, MLN), pp. 2409–2412.
- CIKM-2016-FengXZ #distributed #learning
- Distributed Deep Learning for Question Answering (MF, BX, BZ), pp. 2413–2416.
- CIKM-2016-ChuahWLYB #data analysis #design #optimisation
- Bus Routes Design and Optimization via Taxi Data Analytics (SPC, HW0, YL0, LY, SB), pp. 2417–2420.
- CIKM-2016-HanSBW #learning
- Routing an Autonomous Taxi with Reinforcement Learning (MH, PS, SB, HW0), pp. 2421–2424.
- CIKM-2016-ZhangFR #exclamation #information retrieval #knowledge base
- XKnowSearch!: Exploiting Knowledge Bases for Entity-based Cross-lingual Information Retrieval (LZ0, MF0, AR), pp. 2425–2428.
- CIKM-2016-LiSLNF #classification #knowledge base #named #topic #twitter #word
- TweetSift: Tweet Topic Classification Based on Entity Knowledge Base and Topic Enhanced Word Embedding (QL, SS, XL, AN, RF), pp. 2429–2432.
- CIKM-2016-HuangGHZC #named #privacy
- PARC: Privacy-Aware Data Cleaning (DH, DG, YH, ZZ, FC), pp. 2433–2436.
- CIKM-2016-GuoXYHLLGC #data flow #machine learning #process
- Ease the Process of Machine Learning with Dataflow (TG, JX0, XY, JH, PL, ZL, JG, XC), pp. 2437–2440.
- CIKM-2016-LiuLWT #analysis #information management #named #visualisation
- FIN10K: A Web-based Information System for Financial Report Analysis and Visualization (YWL, LCL, CJW, MFT), pp. 2441–2444.
- CIKM-2016-ChengLL #feature model #interactive #named
- FeatureMiner: A Tool for Interactive Feature Selection (KC, JL, HL0), pp. 2445–2448.
- CIKM-2016-LiuSY #documentation #named #web
- Deola: A System for Linking Author Entities in Web Document with DBLP (YL, WS0, XY), pp. 2449–2452.
- CIKM-2016-TianPT #data transformation #metadata #named
- ConHub: A Metadata Management System for Docker Containers (CXT, AP, YCT), pp. 2453–2455.
- CIKM-2016-ParkJLK #mining #named
- BIGtensor: Mining Billion-Scale Tensor Made Easy (NP, BJ, JL, UK), pp. 2457–2460.
- CIKM-2016-KargarGS #effectiveness #graph #keyword #named
- eGraphSearch: Effective Keyword Search in Graphs (MK, LG, JS), pp. 2461–2464.
- CIKM-2016-RoukhBO #energy #named #query
- EnerQuery: Energy-Aware Query Processing (AR, LB, CO0), pp. 2465–2468.
- CIKM-2016-HuangSLMH #data transformation #graph #named
- TGraph: A Temporal Graph Data Management System (HH, JS, XL, SM0, JH), pp. 2469–2472.
- CIKM-2016-0001MDLMRSZU #data access #database
- Analyzing Data Relevance and Access Patterns of Live Production Database Systems (MB0, CAM, TD, JL, KM, PR, TS, TZ, MU), pp. 2473–2475.
- CIKM-2016-MontoyaTAS #knowledge base
- Thymeflow, A Personal Knowledge Base with Spatio-temporal Data (DM, TPT, SA, FMS), pp. 2477–2480.
- CIKM-2016-YueFS
- Inferring Traffic Incident Start Time with Loop Sensor Data (MY, LF, CS), pp. 2481–2484.
- CIKM-2016-LiTCELB #interactive #named #network #optimisation
- TEAMOPT: Interactive Team Optimization in Big Networks (LL, HT, NC, KE, YRL, NB), pp. 2485–2487.
- CIKM-2016-NadungodageXL #data type #framework #mining #named
- GStreamMiner: A GPU-accelerated Data Stream Mining Framework (CHN, YX, JJL), pp. 2489–2492.
- CIKM-2016-MariappanPRDPR #assurance #named #quality #realtime
- QART: A Tool for Quality Assurance in Real-Time in Contact Centers (RM, BP, PRR, SD, NP, SR), pp. 2493–2496.
- CIKM-2016-AgrawalC #data mining #mining #predict #using
- A Fatigue Strength Predictor for Steels Using Ensemble Data Mining: Steel Fatigue Strength Predictor (AA, ANC), pp. 2497–2500.
- CIKM-2016-MishraLHB
- CyberSafety 2016: The First International Workshop on Computational Methods in CyberSafety (SM, QL, RH, JB), pp. 2501–2502.
- CIKM-2016-Castillo0LY #social #web
- The Fourth International Workshop on Social Web for Disaster Management (SWDM 2016) (CC0, FD0, YRL, JY), pp. 2503–2504.
- CIKM-2016-TangCSTV0 #network
- BigNet 2016: First Workshop on Big Network Analytics (JT0, KC, ZS, HT, MV, YY0), pp. 2505–2506.
- CIKM-2016-FangRX #data-driven
- DDTA 2016: The Workshop on Data-Driven Talent Acquisition (YF0, MdR, HX), pp. 2507–2508.
- CIKM-2016-ShiTWA #big data #data mining #mining #visual notation
- ACM DAVA'16: 2nd International Workshop on DAta mining meets Visual Analytics at Big Data Era (LS, HT, CW, LA), p. 2509.
- CIKM-2016-KimCCL #mining
- DTMBIO 2016: The Tenth International Workshop on Data and Text Mining in Biomedical Informatics (SK, JYC, VC, DL), pp. 2511–2512.