Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining
KDD, 2017.
@proceedings{KDD-2017,
doi = "10.1145/3097983",
isbn = "978-1-4503-4887-4",
publisher = "{ACM}",
title = "{Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining}",
year = 2017,
}
Contents (232 items)
- KDD-2017-Dwork #question #what
- What's Fair? (CD), p. 1.
- KDD-2017-Miller #future of #integration
- The Future of Data Integration (RJM), p. 3.
- KDD-2017-Yu #predict
- Three Principles of Data Science: Predictability, Stability and Computability (BY), p. 5.
- KDD-2017-FayyadSS
- Foreword to the Applied Data Science: Invited Talks Track at KDD-2017 (UMF, ES, AS), pp. 7–8.
- KDD-2017-Rubia
- More than the Sum of its Parts: Building Domino Data Lab (EAdlR), p. 9.
- KDD-2017-Berglund #big data #mining
- Mining Big Data in NeuroGenetics to Understand Muscular Dystrophy (AB), p. 11.
- KDD-2017-Bloom #industrial #machine learning
- Industrial Machine Learning (JB), p. 13.
- KDD-2017-Cao #behaviour
- Behavior Informatics to Discover Behavior Insight for Active and Tailored Client Management (LC), pp. 15–16.
- KDD-2017-Desai
- It Takes More than Math and Engineering to Hit the Bullseye with Data (PD), p. 17.
- KDD-2017-How #learning #nondeterminism #theory and practice
- Planning and Learning under Uncertainty: Theory and Practice (JPH), p. 19.
- KDD-2017-KarpatneK #big data #challenge #machine learning
- Big Data in Climate: Opportunities and Challenges for Machine Learning (AK, VK), pp. 21–22.
- KDD-2017-Mazumdar #big data #challenge #metric
- Addressing Challenges with Big Data for Media Measurement (MM), p. 23.
- KDD-2017-Pafka #machine learning #question
- Machine Learning Software in Practice: Quo Vadis? (SP), p. 25.
- KDD-2017-Parekh #design #scalability
- Designing AI at Scale to Power Everyday Life (RP), p. 27.
- KDD-2017-Potere
- Spaceborne Data Enters the Mainstream (DP), p. 29.
- KDD-2017-FayyadCRPCL #benchmark #metric #process #question
- Benchmarks and Process Management in Data Science: Will We Ever Get Over the Mess? (UMF, AC, EAdlR, SP, AC, JYL), pp. 31–32.
- KDD-2017-MuthukrishnanTH #future of
- The Future of Artificially Intelligent Assistants (MM, AT, LPH, AG, DA), pp. 33–34.
- KDD-2017-AngelinoLASR #learning
- Learning Certifiably Optimal Rule Lists (EA, NLS, DA, MS, CR), pp. 35–44.
- KDD-2017-AvinLNP #bound #network
- Improved Degree Bounds and Full Spectrum Power Laws in Preferential Attachment Networks (CA, ZL, YN, DP), pp. 45–53.
- KDD-2017-BaiWT0D #network
- Unsupervised Network Discovery for Brain Imaging Data (ZB, PBW, AET, FW0, ID), pp. 55–64.
- KDD-2017-BaytasXZWJZ #network #type system
- Patient Subtyping via Time-Aware LSTM Networks (IMB, CX, XZ, FW0, AKJ0, JZ), pp. 65–74.
- KDD-2017-ChangYY #multi #recognition #robust #visual notation
- Robust Top-k Multiclass SVM for Visual Category Recognition (XC, YY, YY0), pp. 75–83.
- KDD-2017-ChenZ #named
- KATE: K-Competitive Autoencoder for Text (YC0, MJZ), pp. 85–94.
- KDD-2017-Cohen0Y #big data #set
- A Minimal Variance Estimator for the Cardinality of Big Data Set Intersection (RC, LK0, AY), pp. 95–103.
- KDD-2017-Cohen #sketching #statistics #sublinear
- HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics (EC), pp. 105–114.
- KDD-2017-ConteFMPT #performance #scalability
- Fast Enumeration of Large k-Plexes (AC, DF, CM, MP, RT), pp. 115–124.
- KDD-2017-DauK #matrix
- Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery (HAD, EJK), pp. 125–134.
- KDD-2017-DongCS #learning #named #network #representation #scalability
- metapath2vec: Scalable Representation Learning for Heterogeneous Networks (YD, NVC, AS), pp. 135–144.
- KDD-2017-EpastoLL #clustering #framework
- Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters (AE, SL, RPL), pp. 145–154.
- KDD-2017-FoxAJPW #using
- Contextual Motifs: Increasing the Utility of Motifs using Contextual Data (IF, LA, MJ, RPB, JW), pp. 155–164.
- KDD-2017-FuLTA #integer #programming #recommendation
- Unsupervised P2P Rental Recommendations via Integer Programming (YF, GL, MT, CCA), pp. 165–173.
- KDD-2017-GuSG #co-evolution #evolution #migration #network #social
- The Co-Evolution Model for Social Network Evolving and Opinion Migration (YG, YS, JG), pp. 175–184.
- KDD-2017-GuLH #algorithm #automation
- Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping (BG, GL, HH), pp. 185–193.
- KDD-2017-GuidottiMNGP #clustering #transaction
- Clustering Individual Transactional Data for Masses of Users (RG, AM, MN, FG, DP), pp. 195–204.
- KDD-2017-HallacPBL #network #visual notation
- Network Inference via the Time-Varying Graphical Lasso (DH, YP, SPB, JL), pp. 205–213.
- KDD-2017-HallacVBL #clustering #multi
- Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data (DH, SV, SPB, JL), pp. 215–223.
- KDD-2017-HeHBHX #correlation #modelling #performance #topic
- Efficient Correlated Topic Modeling with Topic Embedding (JH, ZH, TBK, YH, EPX), pp. 225–233.
- KDD-2017-HopeCKS #mining
- Accelerating Innovation Through Analogy Mining (TH, JC, AK, DS), pp. 235–243.
- KDD-2017-HsiehSD #distributed #kernel
- Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines (CJH, SS, ISD), pp. 245–254.
- KDD-2017-KobrenMKM #algorithm #clustering
- A Hierarchical Algorithm for Extreme Clustering (AK, NM, AK, AM), pp. 255–264.
- KDD-2017-KuangCLJY
- Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing (KK, PC0, BL0, MJ0, SY), pp. 265–274.
- KDD-2017-LakkarajuKLLM #algorithm #predict #problem
- The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables (HL, JMK, JL, JL, SM), pp. 275–284.
- KDD-2017-0013H #learning #paradigm #predict
- Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics (XL0, JH), pp. 285–294.
- KDD-2017-LiTWSCB #question
- Is the Whole Greater Than the Sum of Its Parts? (LL, HT, YW0, CS, NC, NB), pp. 295–304.
- KDD-2017-LiS #collaboration #recommendation
- Collaborative Variational Autoencoder for Recommender Systems (XL, JS), pp. 305–314.
- KDD-2017-Li #fourier #kernel #normalisation #random
- Linearized GMM Kernels and Normalized Random Fourier Features (PL0), pp. 315–324.
- KDD-2017-LianLG00C #matrix
- Discrete Content-aware Matrix Factorization (DL, RL, YG, KZ0, XX0, LC), pp. 325–334.
- KDD-2017-LiuFMRSX #analysis #effectiveness #internet #process #realtime
- Effective and Real-time In-App Activity Analysis in Encrypted Internet Traffic Streams (JL, YF, JM, YR, LS, HX), pp. 335–344.
- KDD-2017-LuoZQYYWYW #functional #learning #multi
- Functional Annotation of Human Protein Coding Isoforms via Non-convex Multi-Instance Learning (TL, WZ, SQ, YY, DY, GW, JY, JW0), pp. 345–354.
- KDD-2017-MandrosBV #approximate #dependence #functional #reliability
- Discovering Reliable Approximate Functional Dependencies (PM, MB, JV), pp. 355–363.
- KDD-2017-MautzYPB #towards
- Towards an Optimal Subspace for K-Means (DM, WY0, CP, CB), pp. 365–373.
- KDD-2017-PerrosPWVSTS #named #scalability
- SPARTan: Scalable PARAFAC2 for Large & Sparse Data (IP, EEP, FW0, RWV, ES, MT, JS), pp. 375–384.
- KDD-2017-RibeiroSF #learning #named
- struc2vec: Learning Node Representations from Structural Identity (LFRR, PHPS, DRF), pp. 385–394.
- KDD-2017-SatheA #similarity
- Similarity Forests (SS, CCA), pp. 395–403.
- KDD-2017-ShahSC #algorithm #constraints #online #ranking #web
- Online Ranking with Constraints: A Primal-Dual Algorithm and Applications to Web Traffic-Shaping (PS, AS, TC), pp. 405–414.
- KDD-2017-ShenHYSLC #network #on the #online #social
- On Finding Socially Tenuous Groups for Online Social Networks (CYS, LHH, DNY, HHS, WCL, MSC), pp. 415–424.
- KDD-2017-ShiCZG0 #named #network #probability
- PReP: Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Information Networks (YS, PWC, HZ, HG, JH0), pp. 425–434.
- KDD-2017-SongHGCH #multi #streaming
- Multi-Aspect Streaming Tensor Completion (QS, XH, HG, JC, XH), pp. 435–443.
- KDD-2017-SpringS #learning #random #scalability
- Scalable and Sustainable Deep Learning via Randomized Hashing (RS, AS), pp. 445–454.
- KDD-2017-Tagami #approximate #classification #multi #named #nearest neighbour
- AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification (YT), pp. 455–464.
- KDD-2017-TolomeiSHL #predict
- Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking (GT, FS, AH, ML), pp. 465–474.
- KDD-2017-WangHCLYR #mining #network
- Structural Deep Brain Network Mining (SW, LH0, BC, CTL, PSY, ABR), pp. 475–484.
- KDD-2017-WangAL #kernel #performance #random #re-engineering
- Randomized Feature Engineering as a Fast and Accurate Alternative to Kernel Methods (SW, CCA, HL0), pp. 485–494.
- KDD-2017-WangFLHA #detection #process
- Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes (PW, YF, GL, WH, CCA), pp. 495–503.
- KDD-2017-0001YXWY #approximate #effectiveness #named #personalisation #rank
- FORA: Simple and Effective Approximate Single-Source Personalized PageRank (SW0, RY, XX, ZW, YY), pp. 505–514.
- KDD-2017-WuHS #collaboration #ranking #scalability
- Large-scale Collaborative Ranking in Near-Linear Time (LW, CJH, JS), pp. 515–524.
- KDD-2017-Xu0TTL #distance #higher-order #named #optimisation #rating #recommendation
- HoORaYs: High-order Optimization of Rating Distance for Recommender Systems (JX0, YY0, HT, XT, JL0), pp. 525–534.
- KDD-2017-XunLGZ #coordination #topic #word
- Collaboratively Improving Topic Discovery and Word Embeddings by Coordinating Global and Local Contexts (GX, YL, JG0, AZ), pp. 535–543.
- KDD-2017-YenHDRDX #classification #named #parallel
- PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification (IEHY, XH, WD0, PR, ISD, EPX), pp. 545–553.
- KDD-2017-YinBLG #clustering #graph #higher-order
- Local Higher-Order Graph Clustering (HY, ARB, JL, DFG), pp. 555–564.
- KDD-2017-ZangCF0 #memory management #modelling #process #social
- Long Short Memory Process: Modeling Growth Dynamics of Microscopic Social Connectivity (CZ, PC0, CF, WZ0), pp. 565–574.
- KDD-2017-ZhangC #predict
- Weisfeiler-Lehman Neural Machine for Link Prediction (MZ, YC), pp. 575–583.
- KDD-2017-Zhang0 #named #performance #similarity
- EmbedJoin: Efficient Edit Similarity Joins via Embeddings (HZ, QZ0), pp. 585–594.
- KDD-2017-ZhangLLYZH0 #detection #named #online #twitter
- TrioVecEvent: Embedding-Based Online Local Event Detection in Geo-Tagged Tweet Streams (CZ0, LL, DL, QY0, HZ, TH, JH0), pp. 595–604.
- KDD-2017-ZhangWLTL #clustering #graph #heuristic
- Graph Edge Partitioning via Neighborhood Heuristic (CZ, FW, QL, ZGT, ZL), pp. 605–614.
- KDD-2017-ZhangLZXXY #matrix #sketching
- Randomization or Condensation?: Linear-Cost Matrix Sketching Via Cascaded Compression Sampling (KZ0, CL, JZ0, HX, EPX, JY), pp. 615–623.
- KDD-2017-ZhaoZGLCLW
- Tracking the Dynamics in Crowdfunding (HZ, HZ, YG, QL0, EC, HL, LW), pp. 625–634.
- KDD-2017-ZhaoYLSL #network #recommendation
- Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks (HZ, QY, JL, YS, DLL), pp. 635–644.
- KDD-2017-ZhengP #kernel
- Coresets for Kernel Regression (YZ, JMP), pp. 645–654.
- KDD-2017-ZhouZYATDH #algorithm #graph
- A Local Algorithm for Structure-Preserving Graph Cut (DZ, SZ, MYY, SA, HT, HD, JH), pp. 655–664.
- KDD-2017-ZhouP #detection #robust
- Anomaly Detection with Robust Deep Autoencoders (CZ, RCP), pp. 665–674.
- KDD-2017-AgarwalBSJ #effectiveness #evaluation #feedback #multi #using
- Effective Evaluation Using Logged Bandit Feedback from Multiple Loggers (AA, SB0, TS, TJ), pp. 687–696.
- KDD-2017-AgrawalAKHLCK #named
- Tripoles: A New Class of Relationships in Time Series Data (SA, GA, AK, WH, SL, SC, VK), pp. 697–706.
- KDD-2017-Antikacioglu0 #recommendation
- Post Processing Recommender Systems for Diversity (AA, RR0), pp. 707–716.
- KDD-2017-Bauman0T #aspect-oriented #recommendation
- Aspect Based Recommendations: Recommending Items with the Most Valuable Aspects Based on User Reviews (KB, BL0, AT), pp. 717–725.
- KDD-2017-BlalockG #data mining #mining #named #performance
- Bolt: Accelerated Data Mining with Fast Vector Compression (DWB, JVG), pp. 727–735.
- KDD-2017-BojchevskiMG #clustering #modelling #robust #semistructured data
- Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings (AB, YM, SG), pp. 737–746.
- KDD-2017-CaoZZYPZARL #detection #mobile #modelling #named #type system
- DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection (BC, LZ, CZ, PSY, AP, JZ, OA, KR, ADL), pp. 747–755.
- KDD-2017-ChenG #optimisation #performance
- Fast Newton Hard Thresholding Pursuit for Sparsity Constrained Nonconvex Optimization (JC, QG), pp. 757–766.
- KDD-2017-ChenSSH #collaboration #on the
- On Sampling Strategies for Neural Network-based Collaborative Filtering (TC0, YS, YS, LH), pp. 767–776.
- KDD-2017-ChengLL #feature model #network #social
- Unsupervised Feature Selection in Signed Social Networks (KC, JL, HL0), pp. 777–786.
- KDD-2017-ChoiBSSS #graph #learning #named #representation
- GRAM: Graph-based Attention Model for Healthcare Representation Learning (EC, MTB, LS, WFS, JS), pp. 787–795.
- KDD-2017-Corbett-DaviesP #algorithm #cost analysis
- Algorithmic Decision Making and the Cost of Fairness (SCD, EP, AF, SG, AH), pp. 797–806.
- KDD-2017-DongJXC #case study #network
- Structural Diversity and Homophily: A Study Across More Than One Hundred Big Networks (YD, RAJ, JX, NVC), pp. 807–816.
- KDD-2017-EikmeierG #network
- Revisiting Power-law Distributions in Spectra of Real World Networks (NE, DFG), pp. 817–826.
- KDD-2017-FuA0TX #automation #detection #interactive #named
- REMIX: Automated Exploration for Interactive Outlier Detection (YF, CCA, SP0, DST, HX), pp. 827–835.
- KDD-2017-GabelKS #approximate #distributed
- Anarchists, Unite: Practical Entropy Approximation for Distributed Streams (MG, DK, AS), pp. 837–846.
- KDD-2017-HosseiniAKAFZR #recommendation
- Recurrent Poisson Factorization for Temporal Recommendation (SAH, KA, AK, AA, MF, HZ, HRR), pp. 847–855.
- KDD-2017-HuangZ #analysis #named
- SPOT: Sparse Optimal Transformations for High Dimensional Variable Selection and Exploratory Regression Analysis (QH, MZ), pp. 857–865.
- KDD-2017-JiaKNGCWK #incremental #predict
- Incremental Dual-memory LSTM in Land Cover Prediction (XJ, AK, GN, JG, KC, PCW, VK), pp. 867–876.
- KDD-2017-JiangSCRKH0 #corpus #named
- MetaPAD: Meta Pattern Discovery from Massive Text Corpora (MJ0, JS, TC, XR, LMK, TPH, JH0), pp. 877–886.
- KDD-2017-KimSYJ
- Federated Tensor Factorization for Computational Phenotyping (YK, JS, HY, XJ), pp. 887–895.
- KDD-2017-KomiyamaIANM #mining #multi #statistics #testing
- Statistical Emerging Pattern Mining with Multiple Testing Correction (JK, MI, HA, TN, SiM), pp. 897–906.
- KDD-2017-LabutovHBH #learning #mining
- Semi-Supervised Techniques for Mining Learning Outcomes and Prerequisites (IL, YH0, PB, DH), pp. 907–915.
- KDD-2017-LiGZXZ #analysis #development #perspective
- Prospecting the Career Development of Talents: A Survival Analysis Perspective (HL, YG, HZ, HX, HZ), pp. 917–925.
- KDD-2017-LiMGK #interactive #network
- A Context-aware Attention Network for Interactive Question Answering (HL, MRM, YG, AK), pp. 927–935.
- KDD-2017-LiuPH #distributed #learning #multi
- Distributed Multi-Task Relationship Learning (SL, SJP, QH), pp. 937–946.
- KDD-2017-LiuLLTZX #modelling
- Point-of-Interest Demand Modeling with Human Mobility Patterns (YL, CL, XL, MT, HZ, HX), pp. 947–955.
- KDD-2017-LiuSLMLX #functional #predict
- Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion (JL, LS, QL, JM, YL, HX), pp. 957–966.
- KDD-2017-MaMXLGSZ #data flow #semistructured data
- Unsupervised Discovery of Drug Side-Effects from Heterogeneous Data Sources (FM, CM, HX, QL0, JG0, LS, AZ), pp. 967–976.
- KDD-2017-MaurusP #detection #using
- Let's See Your Digits: Anomalous-State Detection using Benford's Law (SM, CP), pp. 977–986.
- KDD-2017-QiTWL #process
- Mixture Factorized Ornstein-Uhlenbeck Processes for Time-Series Forecasting (GJQ, JT, JW, JL), pp. 987–995.
- KDD-2017-QuR0 #automation #knowledge base
- Automatic Synonym Discovery with Knowledge Bases (MQ, XR, JH0), pp. 997–1005.
- KDD-2017-RaffN #distance #scalability #sequence
- An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance (ER, CKN), pp. 1007–1015.
- KDD-2017-RozenshteinTG #approach #social
- Inferring the Strength of Social Ties: A Community-Driven Approach (PR, NT, AG), pp. 1017–1025.
- KDD-2017-SaveskiPSDGXA #detection #network #random
- Detecting Network Effects: Randomizing Over Randomized Experiments (MS, JPA, GSJ, WD, SG, YX, EMA), pp. 1027–1035.
- KDD-2017-Scholtes #multi #network #visual notation
- When is a Network a Network?: Multi-Order Graphical Model Selection in Pathways and Temporal Networks (IS), pp. 1037–1046.
- KDD-2017-ShenHGC #comprehension #learning #named
- ReasoNet: Learning to Stop Reading in Machine Comprehension (YS, PSH, JG, WC), pp. 1047–1055.
- KDD-2017-ShinHKF #detection #incremental #named
- DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams (KS, BH, JK, CF), pp. 1057–1066.
- KDD-2017-SifferFTL #detection
- Anomaly Detection in Streams with Extreme Value Theory (AS, PAF, AT, CL), pp. 1067–1075.
- KDD-2017-SinghSGMC #evolution #modelling #network
- Relay-Linking Models for Prominence and Obsolescence in Evolving Networks (MS0, RS, PG, AM0, SC), pp. 1077–1086.
- KDD-2017-Song0H #clustering #named #parallel #performance
- PAMAE: Parallel k-Medoids Clustering with High Accuracy and Efficiency (HS, JGL0, WSH), pp. 1087–1096.
- KDD-2017-AmandH #composition #learning #metric
- Sparse Compositional Local Metric Learning (JSA, JH), pp. 1097–1104.
- KDD-2017-TangW0M #learning
- End-to-end Learning for Short Text Expansion (JT, YW, KZ0, QM), pp. 1105–1113.
- KDD-2017-TillmanMBG #graph
- Construction of Directed 2K Graphs (BT, AM, CTB, MG), pp. 1115–1124.
- KDD-2017-UstunR
- Optimized Risk Scores (BU, CR), pp. 1125–1134.
- KDD-2017-WangFWYDX #recommendation #sentiment
- A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users (HW0, YF, QW, HY, CD, HX), pp. 1135–1143.
- KDD-2017-WangGZOXLG #detection #network
- Adversary Resistant Deep Neural Networks with an Application to Malware Detection (QW, WG, KZ, AGOI, XX, XL, CLG), pp. 1145–1153.
- KDD-2017-WangSZTJZ #matrix #modelling #multi
- Multi-Modality Disease Modeling via Collective Deep Matrix Factorization (QW, MS, LZ, PT0, SJ, JZ), pp. 1155–1164.
- KDD-2017-WuSY #modelling #normalisation
- Decomposed Normalized Maximum Likelihood Codelength Criterion for Selecting Hierarchical Latent Variable Models (TW, SS, KY), pp. 1165–1174.
- KDD-2017-WuAL #detection
- Structural Event Detection from Log Messages (FW0, PA, ZL), pp. 1175–1184.
- KDD-2017-WuG #higher-order #markov #process
- Retrospective Higher-Order Markov Processes for User Trails (TW, DFG), pp. 1185–1194.
- KDD-2017-XieBLZ #distributed #learning #multi #privacy
- Privacy-Preserving Distributed Multi-Task Learning with Asynchronous Updates (LX, IMB, KL, JZ), pp. 1195–1204.
- KDD-2017-XingHC #representation #statistics
- Evaluating U.S. Electoral Representation with a Joint Statistical Model of Congressional Roll-Calls, Legislative Text, and Voter Registration Data (ZX, SH, LC), pp. 1205–1214.
- KDD-2017-YamadaLGCWKKMC #predict
- Convex Factorization Machine for Toxicogenomics Prediction (MY, WL, AG, JC, KW, SAK, SK, HM, YC), pp. 1215–1224.
- KDD-2017-YanCKR #big data #detection #distributed
- Distributed Local Outlier Detection in Big Data (YY, LC, CK, EAR), pp. 1225–1234.
- KDD-2017-YanCR #detection #scalability
- Scalable Top-n Local Outlier Detection (YY, LC, EAR), pp. 1235–1244.
- KDD-2017-YangBZY0 #approach #collaboration #learning #recommendation
- Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation (CY, LB, CZ0, QY0, JH0), pp. 1245–1254.
- KDD-2017-YangTH #multi
- Multi-task Function-on-function Regression with Co-grouping Structured Sparsity (PY, QT, JH), pp. 1255–1264.
- KDD-2017-YeZMPB #learning #network
- Learning from Labeled and Unlabeled Vertices in Networks (WY0, LZ, DM, CP, CB), pp. 1265–1274.
- KDD-2017-YinLN #bound #education #scalability
- Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach (PY, PL0, TN), pp. 1275–1284.
- KDD-2017-YouX0T #education #learning #multi #network
- Learning from Multiple Teacher Networks (SY, CX0, CX0, DT), pp. 1285–1294.
- KDD-2017-YuCSZY #behaviour #framework #social
- A Temporally Heterogeneous Survival Framework with Application to Social Behavior Dynamics (LY, PC0, CS, TZ, SY), pp. 1295–1304.
- KDD-2017-ZhanZ #induction #learning #multi
- Inductive Semi-supervised Multi-Label Learning with Co-Training (WZ, MLZ), pp. 1305–1314.
- KDD-2017-ZhangCTSS #effectiveness #learning #multi #named
- LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity (YZ, RC, JT0, WFS, JS), pp. 1315–1324.
- KDD-2017-ZhangWP #graph #visualisation
- Visualizing Attributed Graphs via Terrain Metaphor (YZ, YW, SP0), pp. 1325–1334.
- KDD-2017-ZhangWW
- Achieving Non-Discrimination in Data Release (LZ0, YW, XW), pp. 1335–1344.
- KDD-2017-AlbertKG #identification #network #scalability #using
- Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale (AA, JK, MCG), pp. 1357–1366.
- KDD-2017-AokiAM #predict
- Luck is Hard to Beat: The Difficulty of Sports Prediction (RYSA, RMA, POSVdM), pp. 1367–1376.
- KDD-2017-BaoHRLZ
- Planning Bike Lanes based on Sharing-Bikes' Trajectories (JB0, TH, SR, YL, YZ0), pp. 1377–1386.
- KDD-2017-BaylorBCFFHHIJK #framework #machine learning #named #platform
- TFX: A TensorFlow-Based Production-Scale Machine Learning Platform (DB, EB, HTC, NF, CYF, ZH, SH, MI, VJ, LK0, CYK, LL, CM, ANM, NP, SR, SR0, SEW, MW, JW, XZ, MZ), pp. 1387–1395.
- KDD-2017-BorisyukZK #named #performance #towards
- LiJAR: A System for Job Application Redistribution towards Efficient Career Marketplace (FB, LZ, KK), pp. 1397–1406.
- KDD-2017-ChojnackiDFSWZA #approach #comprehension
- A Data Science Approach to Understanding Residential Water Contamination in Flint (AC, CD, AF, GS, JW, DTZ, JDA, EMS), pp. 1407–1416.
- KDD-2017-CurtisG #estimation #scalability
- Estimation of Recent Ancestral Origins of Individuals on a Large Scale (REC, ARG), pp. 1417–1425.
- KDD-2017-DmitrievGKV #metric #online
- A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled Experiments (PAD, SG, DWK, GJV), pp. 1427–1436.
- KDD-2017-DongMSW
- A Century of Science: Globalization of Scientific Collaborations, Citations, and Innovations (YD, HM, ZS, KW), pp. 1437–1446.
- KDD-2017-DuZCT #interactive #named #performance
- FIRST: Fast Interactive Attributed Subgraph Matching (BD, SZ, NC, HT), pp. 1447–1456.
- KDD-2017-EmraniMX #learning #multi #using
- Prognosis and Diagnosis of Parkinson's Disease Using Multi-Task Learning (SE, AM, WX), pp. 1457–1466.
- KDD-2017-GanH #data mining #framework #mining #scalability
- A Data Mining Framework for Valuing Large Portfolios of Variable Annuities (GG, JXH), pp. 1467–1475.
- KDD-2017-GhoshCLMCBMR #automation #named #open source
- GELL: Automatic Extraction of Epidemiological Line Lists from Open Sources (SG, PC, BLL, MSM, EC, JSB, MVM, NR), pp. 1477–1485.
- KDD-2017-GolovinSMKKS #black box #optimisation
- Google Vizier: A Service for Black-Box Optimization (DG, BS, SM, GK, JK, DS), pp. 1487–1495.
- KDD-2017-GongNSG #health #predict
- Predicting Clinical Outcomes Across Changing Electronic Health Record Systems (JJG, TN, PS, JVG), pp. 1497–1505.
- KDD-2017-HouYSA #android #detection #named #network
- HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network (SH, YY, YS, MA), pp. 1507–1515.
- KDD-2017-JohariKPW #matter #testing #what #why
- Peeking at A/B Tests: Why it matters, and what to do about it (RJ, PK, LP, DW0), pp. 1517–1525.
- KDD-2017-KoutraDBWIFB #design #named #performance
- PNP: Fast Path Ensemble Method for Movie Design (DK, AD, SB, UW, SI, CF, JB), pp. 1527–1536.
- KDD-2017-KuangPCMP #scalability
- Pharmacovigilance via Baseline Regularization with Large-Scale Longitudinal Observational Data (ZK, PLP, VSC, RM, DP), pp. 1537–1546.
- KDD-2017-LiJZXLZZWZWXB #analysis #framework #named #platform
- FLAP: An End-to-End Event Log Analysis Platform for System Management (TL0, YJ, CZ, BX0, ZL0, WZ, XZ, WW0, LZ, JW, LX, DB), pp. 1547–1556.
- KDD-2017-LiuXOS #e-commerce #ranking
- Cascade Ranking for Operational E-commerce Search (SL, FX, WO, LS), pp. 1557–1565.
- KDD-2017-McNamaraVY #feature model #framework #multimodal
- Developing a Comprehensive Framework for Multimodal Feature Extraction (QM, AdlV, TY), pp. 1567–1574.
- KDD-2017-MottiniA #network #pointer #predict #using
- Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction (AM, RAA), pp. 1575–1583.
- KDD-2017-PaulLTYF #analysis #exclamation #named #sentiment #twitter #what
- Compass: Spatio Temporal Sentiment Analysis of US Election What Twitter Says! (DP, FL0, MKT, XY, RF), pp. 1585–1594.
- KDD-2017-PortnoffHDAM
- Backpage and Bitcoin: Uncovering Human Traffickers (RSP, DYH, PD, SA, DM), pp. 1595–1604.
- KDD-2017-PowerRWL
- Not All Passes Are Created Equal: Objectively Measuring the Risk and Reward of Passes in Soccer from Tracking Data (PP, HR, XW, PL), pp. 1605–1613.
- KDD-2017-QinKWRC #multi #named
- MARAS: Signaling Multi-Drug Adverse Reactions (XQ0, TK, SW, EAR, LC), pp. 1615–1623.
- KDD-2017-ShahYARSC
- A Practical Exploration System for Search Advertising (PS, MY, SA, AR, BS, RC), pp. 1625–1631.
- KDD-2017-SybrandtSS #automation #generative #named
- MOLIERE: Automatic Biomedical Hypothesis Generation System (JS, MS, IS), pp. 1633–1642.
- KDD-2017-TataPNCGGMSGMK #experience
- Quick Access: Building a Smart Experience for Google Drive (ST, AP, MN, MC, JG, AG, AM, MS0, DG, CM, RK), pp. 1643–1651.
- KDD-2017-TongCZCWYYL #approach #online #platform #predict #scalability
- The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms (YT, YC, ZZ, LC0, JW0, QY0, JY, WL), pp. 1653–1662.
- KDD-2017-VandalKGMNG #generative #image #named
- DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution (TV, EK, SG, ARM, RRN, ARG), pp. 1663–1672.
- KDD-2017-WangCWX #safety
- No Longer Sleeping with a Bomb: A Duet System for Protecting Urban Safety from Dangerous Goods (JW, CC, JW, ZX), pp. 1673–1681.
- KDD-2017-ZhangL #platform
- A Quasi-experimental Estimate of the Impact of P2P Transportation Platforms on Urban Consumer Patterns (ZZ, BL), pp. 1683–1692.
- KDD-2017-ZhouLZCLYCYCDQ #distributed #learning #named #parametricity
- KunPeng: Parameter Server based Distributed Learning Systems and Its Applications in Alibaba and Ant Financial (JZ, XL, PZ, CC, LL, XY, QC, JY, XC, YD, Y(Q), pp. 1693–1702.
- KDD-2017-ZhuSMYRZ
- Deep Embedding Forest: Forest-based Serving with Deep Embedding Features (JZ0, YS, JCM, DY, HR, YZ), pp. 1703–1711.
- KDD-2017-AhmedLSW #algorithm #industrial #modelling #problem #topic
- A Practical Algorithm for Solving the Incoherence Problem of Topic Models In Industrial Applications (AA, JL, DS, YW), pp. 1713–1721.
- KDD-2017-AndersonM #classification #machine learning
- Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity (BA, DAM), pp. 1723–1732.
- KDD-2017-BifetZFHZQHP #data type #evolution #mining #performance
- Extremely Fast Decision Tree Mining for Evolving Data Streams (AB, JZ, WF0, CH, JZ, JQ, GH0, BP), pp. 1733–1742.
- KDD-2017-ChahuaraGJR #optimisation #realtime #web
- Real-Time Optimization of Web Publisher RTB Revenues (PC, NG, GJ, JMR), pp. 1743–1751.
- KDD-2017-ChamberlainCLPD #predict #using
- Customer Lifetime Value Prediction Using Embeddings (BPC, ÂC, CHBL, RP, MPD), pp. 1753–1762.
- KDD-2017-ChengHHIMPRSSST #flexibility #framework #machine learning
- TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks (HTC, ZH, LH, MI, CM, IP, GR, DS, JS, DS, YT, PT, MW, CX, JX), pp. 1763–1771.
- KDD-2017-DadkhahiM #detection #embedded #learning #network
- Learning Tree-Structured Detection Cascades for Heterogeneous Networks of Embedded Devices (HD, BMM), pp. 1773–1781.
- KDD-2017-DebGIPVYY #automation #learning #named #network #policy #predict
- AESOP: Automatic Policy Learning for Predicting and Mitigating Network Service Impairments (SD, ZG, SI, SCP, SV, HY, JY), pp. 1783–1792.
- KDD-2017-GhoshDPYG #automation #categorisation #ecosystem
- Automated Categorization of Onion Sites for Analyzing the Darkweb Ecosystem (SG, AD, PAP, VY, AG), pp. 1793–1802.
- KDD-2017-HassanALT #automation #detection #towards
- Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster (NH, FA, CL, MT), pp. 1803–1812.
- KDD-2017-HillNLIV #algorithm #multi #optimisation #performance #realtime
- An Efficient Bandit Algorithm for Realtime Multivariate Optimization (DNH, HN, YL0, AI, SVNV), pp. 1813–1821.
- KDD-2017-IosifidisN #learning #scalability #sentiment
- Large Scale Sentiment Learning with Limited Labels (VI, EN), pp. 1823–1832.
- KDD-2017-ItoF #optimisation #predict
- Optimization Beyond Prediction: Prescriptive Price Optimization (SI, RF), pp. 1833–1841.
- KDD-2017-JanakiramanMO
- Finding Precursors to Anomalous Drop in Airspeed During a Flight's Takeoff (VMJ, BLM, NCO), pp. 1843–1852.
- KDD-2017-KittsKYZBPTTJ #multi
- Ad Serving with Multiple KPIs (BK, MK, IY, YZ, GB, AP, ST, ET, SRJ), pp. 1853–1861.
- KDD-2017-LiCCC
- Discovering Pollution Sources and Propagation Patterns in Urban Area (XL, YC, GC, LC), pp. 1863–1872.
- KDD-2017-LiHG #concept #enterprise #spreadsheet #using
- Discovering Enterprise Concepts Using Spreadsheet Tables (KL, YH, KG), pp. 1873–1882.
- KDD-2017-LiuJDJ #clustering #normalisation
- Supporting Employer Name Normalization at both Entity and Cluster Level (QL, FJ, VSD, AJ), pp. 1883–1892.
- KDD-2017-LouO #named #performance
- BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (YL, MO), pp. 1893–1901.
- KDD-2017-MaCZYSG #bidirectional #named #network #predict
- Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks (FM, RC, JZ, QY, TS, JG0), pp. 1903–1911.
- KDD-2017-MalloyBAKJ #graph #internet
- Internet Device Graphs (MM, PB, ECA, JK, AJ), pp. 1913–1921.
- KDD-2017-ManzoorA #exclamation
- RUSH!: Targeted Time-limited Coupons via Purchase Forecasts (EAM, LA), pp. 1923–1931.
- KDD-2017-OkuraTOT #recommendation
- Embedding-based News Recommendation for Millions of Users (SO, YT, SO, AT), pp. 1933–1942.
- KDD-2017-OvadiaHKLNPZS #learning
- Learning to Count Mosquitoes for the Sterile Insect Technique (YO, YH, DK, JL, DN, RP, TZ, DS), pp. 1943–1949.
- KDD-2017-PanZLCHHZ #network #scalability
- An Intelligent Customer Care Assistant System for Large-Scale Cellular Network Diagnosis (LP, JZ, PPCL, HC, CH, CH, KZ), pp. 1951–1959.
- KDD-2017-PanBHGP #design
- Deep Design: Product Aesthetics for Heterogeneous Markets (YP, AB, JH, RG, PYP), pp. 1961–1970.
- KDD-2017-QuiselFSK #data type
- Collecting and Analyzing Millions of mHealth Data Streams (TQ, LF, AS, DCK), pp. 1971–1980.
- KDD-2017-RistovskiGHT #integration #machine learning #optimisation #simulation
- Dispatch with Confidence: Integration of Machine Learning, Optimization and Simulation for Open Pit Mines (KR, CG0, KH, HKT), pp. 1981–1989.
- KDD-2017-RuizPWL #performance #quote #tool support
- “The Leicester City Fairytale?”: Utilizing New Soccer Analytics Tools to Compare Performance in the 15/16 & 16/17 EPL Seasons (HR, PP, XW, PL), pp. 1991–2000.
- KDD-2017-SalehianHL #approach #crowdsourcing #machine learning #scalability
- Matching Restaurant Menus to Crowdsourced Food Data: A Scalable Machine Learning Approach (HS, PDH, CL), pp. 2001–2009.
- KDD-2017-SharmaSKS #machine learning #problem
- The Fake vs Real Goods Problem: Microscopy and Machine Learning to the Rescue (AS, VS, VK, LS), pp. 2011–2019.
- KDD-2017-SoskaGRC #automation #identification
- Automatic Application Identification from Billions of Files (KS, CSG, KAR, NC), pp. 2021–2030.
- KDD-2017-TongKIYKSV #learning #multi
- Learning to Generate Rock Descriptions from Multivariate Well Logs with Hierarchical Attention (BT, MK, MI, TY, YK, AS, RV), pp. 2031–2040.
- KDD-2017-UesakaMSKMAY #learning #multi #visual notation
- Multi-view Learning over Retinal Thickness and Visual Sensitivity on Glaucomatous Eyes (TU, KM, HS, TK, HM, RA, KY), pp. 2041–2050.
- KDD-2017-WangYRTZYW #editing #learning #recommendation
- Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors' Demonstration (XW, LY, KR, GT, WZ0, YY0, JW0), pp. 2051–2059.
- KDD-2017-WangJY #framework #hybrid #modelling
- A Hybrid Framework for Text Modeling with Convolutional RNN (CW, FJ, HY), pp. 2061–2069.
- KDD-2017-WoodsAMM #feedback #modelling #predict #using
- Formative Essay Feedback Using Predictive Scoring Models (BW, DA, SM, EM), pp. 2071–2080.
- KDD-2017-XiaoGVT #behaviour #learning
- Learning Temporal State of Diabetes Patients via Combining Behavioral and Demographic Data (HX, JG0, LHV, DST), pp. 2081–2089.
- KDD-2017-YangZH #algorithm #predict #towards
- Local Algorithm for User Action Prediction Towards Display Ads (HY, YZ, JH), pp. 2091–2099.
- KDD-2017-YangKBSWKP #visual notation
- Visual Search at eBay (FY, AK, YB, LS, QW, MHK, RP), pp. 2101–2110.
- KDD-2017-YangDSZFXBM #data-driven #framework #process #recommendation
- A Data-driven Process Recommender Framework (SY, XD, LS, YZ, RAF, HX, RSB, IM), pp. 2111–2120.
- KDD-2017-YilmazEF #predict
- Predicting Optimal Facility Location without Customer Locations (EY, SE, HF), pp. 2121–2130.
- KDD-2017-YinCZ #comprehension #design #named #network #sequence
- DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks (ZY, KhC, RZ), pp. 2131–2139.
- KDD-2017-ZhangAQ #multi #predict
- Stock Price Prediction via Discovering Multi-Frequency Trading Patterns (LZ, CCA, GJQ), pp. 2141–2149.
- KDD-2017-ZhangHMWZFGY #combinator #modelling #optimisation #order
- A Taxi Order Dispatch Model based On Combinatorial Optimization (LZ, TH, YM, GW, JZ, PF, PG, JY), pp. 2151–2159.
- KDD-2017-ZhengBLL #detection #learning #metric
- Contextual Spatial Outlier Detection with Metric Learning (GZ, SLB, TL, ZL), pp. 2161–2170.
- KDD-2017-ZhengGNOY #bias
- Resolving the Bias in Electronic Medical Records (KZ, JG, KYN, BCO, JWLY), pp. 2171–2180.
- KDD-2017-ZhouXBWZLXLSG #analysis #named
- STAR: A System for Ticket Analysis and Resolution (WZ, WX, RB, QW, CZ, TL0, JX0, ZL0, LS, GYG), pp. 2181–2190.
- KDD-2017-ZhuJTPZLG
- Optimized Cost per Click in Taobao Display Advertising (HZ, JJ, CT, FP, YZ, HL, KG), pp. 2191–2200.