Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter


Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining
KDD, 2017.

KER
DBLP
Scholar
DOI
Full names Links ISxN
@proceedings{KDD-2017,
	doi           = "10.1145/3097983",
	isbn          = "978-1-4503-4887-4",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining}",
	year          = 2017,
}

Contents (232 items)

KDD-2017-Dwork #question #what
What's Fair? (CD), p. 1.
KDD-2017-Miller #future of #integration
The Future of Data Integration (RJM), p. 3.
KDD-2017-Yu #predict
Three Principles of Data Science: Predictability, Stability and Computability (BY), p. 5.
KDD-2017-FayyadSS
Foreword to the Applied Data Science: Invited Talks Track at KDD-2017 (UMF, ES, AS), pp. 7–8.
KDD-2017-Rubia
More than the Sum of its Parts: Building Domino Data Lab (EAdlR), p. 9.
KDD-2017-Berglund #big data #mining
Mining Big Data in NeuroGenetics to Understand Muscular Dystrophy (AB), p. 11.
KDD-2017-Bloom #industrial #machine learning
Industrial Machine Learning (JB), p. 13.
KDD-2017-Cao #behaviour
Behavior Informatics to Discover Behavior Insight for Active and Tailored Client Management (LC), pp. 15–16.
KDD-2017-Desai
It Takes More than Math and Engineering to Hit the Bullseye with Data (PD), p. 17.
KDD-2017-How #learning #nondeterminism #theory and practice
Planning and Learning under Uncertainty: Theory and Practice (JPH), p. 19.
KDD-2017-KarpatneK #big data #challenge #machine learning
Big Data in Climate: Opportunities and Challenges for Machine Learning (AK, VK), pp. 21–22.
KDD-2017-Mazumdar #big data #challenge #metric
Addressing Challenges with Big Data for Media Measurement (MM), p. 23.
KDD-2017-Pafka #machine learning #question
Machine Learning Software in Practice: Quo Vadis? (SP), p. 25.
KDD-2017-Parekh #design #scalability
Designing AI at Scale to Power Everyday Life (RP), p. 27.
KDD-2017-Potere
Spaceborne Data Enters the Mainstream (DP), p. 29.
KDD-2017-FayyadCRPCL #benchmark #metric #process #question
Benchmarks and Process Management in Data Science: Will We Ever Get Over the Mess? (UMF, AC, EAdlR, SP, AC, JYL), pp. 31–32.
KDD-2017-MuthukrishnanTH #future of
The Future of Artificially Intelligent Assistants (MM, AT, LPH, AG, DA), pp. 33–34.
KDD-2017-AngelinoLASR #learning
Learning Certifiably Optimal Rule Lists (EA, NLS, DA, MS, CR), pp. 35–44.
KDD-2017-AvinLNP #bound #network
Improved Degree Bounds and Full Spectrum Power Laws in Preferential Attachment Networks (CA, ZL, YN, DP), pp. 45–53.
KDD-2017-BaiWT0D #network
Unsupervised Network Discovery for Brain Imaging Data (ZB, PBW, AET, FW0, ID), pp. 55–64.
KDD-2017-BaytasXZWJZ #network #type system
Patient Subtyping via Time-Aware LSTM Networks (IMB, CX, XZ, FW0, AKJ0, JZ), pp. 65–74.
KDD-2017-ChangYY #multi #recognition #robust #visual notation
Robust Top-k Multiclass SVM for Visual Category Recognition (XC, YY, YY0), pp. 75–83.
KDD-2017-ChenZ #named
KATE: K-Competitive Autoencoder for Text (YC0, MJZ), pp. 85–94.
KDD-2017-Cohen0Y #big data #set
A Minimal Variance Estimator for the Cardinality of Big Data Set Intersection (RC, LK0, AY), pp. 95–103.
KDD-2017-Cohen #sketching #statistics #sublinear
HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics (EC), pp. 105–114.
KDD-2017-ConteFMPT #performance #scalability
Fast Enumeration of Large k-Plexes (AC, DF, CM, MP, RT), pp. 115–124.
KDD-2017-DauK #matrix
Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery (HAD, EJK), pp. 125–134.
KDD-2017-DongCS #learning #named #network #representation #scalability
metapath2vec: Scalable Representation Learning for Heterogeneous Networks (YD, NVC, AS), pp. 135–144.
KDD-2017-EpastoLL #clustering #framework
Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters (AE, SL, RPL), pp. 145–154.
KDD-2017-FoxAJPW #using
Contextual Motifs: Increasing the Utility of Motifs using Contextual Data (IF, LA, MJ, RPB, JW), pp. 155–164.
KDD-2017-FuLTA #integer #programming #recommendation
Unsupervised P2P Rental Recommendations via Integer Programming (YF, GL, MT, CCA), pp. 165–173.
KDD-2017-GuSG #co-evolution #evolution #migration #network #social
The Co-Evolution Model for Social Network Evolving and Opinion Migration (YG, YS, JG), pp. 175–184.
KDD-2017-GuLH #algorithm #automation
Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping (BG, GL, HH), pp. 185–193.
KDD-2017-GuidottiMNGP #clustering #transaction
Clustering Individual Transactional Data for Masses of Users (RG, AM, MN, FG, DP), pp. 195–204.
KDD-2017-HallacPBL #network #visual notation
Network Inference via the Time-Varying Graphical Lasso (DH, YP, SPB, JL), pp. 205–213.
KDD-2017-HallacVBL #clustering #multi
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data (DH, SV, SPB, JL), pp. 215–223.
KDD-2017-HeHBHX #correlation #modelling #performance #topic
Efficient Correlated Topic Modeling with Topic Embedding (JH, ZH, TBK, YH, EPX), pp. 225–233.
KDD-2017-HopeCKS #mining
Accelerating Innovation Through Analogy Mining (TH, JC, AK, DS), pp. 235–243.
KDD-2017-HsiehSD #distributed #kernel
Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines (CJH, SS, ISD), pp. 245–254.
KDD-2017-KobrenMKM #algorithm #clustering
A Hierarchical Algorithm for Extreme Clustering (AK, NM, AK, AM), pp. 255–264.
KDD-2017-KuangCLJY
Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing (KK, PC0, BL0, MJ0, SY), pp. 265–274.
KDD-2017-LakkarajuKLLM #algorithm #predict #problem
The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables (HL, JMK, JL, JL, SM), pp. 275–284.
KDD-2017-0013H #learning #paradigm #predict
Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics (XL0, JH), pp. 285–294.
KDD-2017-LiTWSCB #question
Is the Whole Greater Than the Sum of Its Parts? (LL, HT, YW0, CS, NC, NB), pp. 295–304.
KDD-2017-LiS #collaboration #recommendation
Collaborative Variational Autoencoder for Recommender Systems (XL, JS), pp. 305–314.
KDD-2017-Li #fourier #kernel #normalisation #random
Linearized GMM Kernels and Normalized Random Fourier Features (PL0), pp. 315–324.
KDD-2017-LianLG00C #matrix
Discrete Content-aware Matrix Factorization (DL, RL, YG, KZ0, XX0, LC), pp. 325–334.
KDD-2017-LiuFMRSX #analysis #effectiveness #internet #process #realtime
Effective and Real-time In-App Activity Analysis in Encrypted Internet Traffic Streams (JL, YF, JM, YR, LS, HX), pp. 335–344.
KDD-2017-LuoZQYYWYW #functional #learning #multi
Functional Annotation of Human Protein Coding Isoforms via Non-convex Multi-Instance Learning (TL, WZ, SQ, YY, DY, GW, JY, JW0), pp. 345–354.
KDD-2017-MandrosBV #approximate #dependence #functional #reliability
Discovering Reliable Approximate Functional Dependencies (PM, MB, JV), pp. 355–363.
KDD-2017-MautzYPB #towards
Towards an Optimal Subspace for K-Means (DM, WY0, CP, CB), pp. 365–373.
KDD-2017-PerrosPWVSTS #named #scalability
SPARTan: Scalable PARAFAC2 for Large & Sparse Data (IP, EEP, FW0, RWV, ES, MT, JS), pp. 375–384.
KDD-2017-RibeiroSF #learning #named
struc2vec: Learning Node Representations from Structural Identity (LFRR, PHPS, DRF), pp. 385–394.
KDD-2017-SatheA #similarity
Similarity Forests (SS, CCA), pp. 395–403.
KDD-2017-ShahSC #algorithm #constraints #online #ranking #web
Online Ranking with Constraints: A Primal-Dual Algorithm and Applications to Web Traffic-Shaping (PS, AS, TC), pp. 405–414.
KDD-2017-ShenHYSLC #network #on the #online #social
On Finding Socially Tenuous Groups for Online Social Networks (CYS, LHH, DNY, HHS, WCL, MSC), pp. 415–424.
KDD-2017-ShiCZG0 #named #network #probability
PReP: Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Information Networks (YS, PWC, HZ, HG, JH0), pp. 425–434.
KDD-2017-SongHGCH #multi #streaming
Multi-Aspect Streaming Tensor Completion (QS, XH, HG, JC, XH), pp. 435–443.
KDD-2017-SpringS #learning #random #scalability
Scalable and Sustainable Deep Learning via Randomized Hashing (RS, AS), pp. 445–454.
KDD-2017-Tagami #approximate #classification #multi #named #nearest neighbour
AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification (YT), pp. 455–464.
KDD-2017-TolomeiSHL #predict
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking (GT, FS, AH, ML), pp. 465–474.
KDD-2017-WangHCLYR #mining #network
Structural Deep Brain Network Mining (SW, LH0, BC, CTL, PSY, ABR), pp. 475–484.
KDD-2017-WangAL #kernel #performance #random #re-engineering
Randomized Feature Engineering as a Fast and Accurate Alternative to Kernel Methods (SW, CCA, HL0), pp. 485–494.
KDD-2017-WangFLHA #detection #process
Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes (PW, YF, GL, WH, CCA), pp. 495–503.
KDD-2017-0001YXWY #approximate #effectiveness #named #personalisation #rank
FORA: Simple and Effective Approximate Single-Source Personalized PageRank (SW0, RY, XX, ZW, YY), pp. 505–514.
KDD-2017-WuHS #collaboration #ranking #scalability
Large-scale Collaborative Ranking in Near-Linear Time (LW, CJH, JS), pp. 515–524.
KDD-2017-Xu0TTL #distance #higher-order #named #optimisation #rating #recommendation
HoORaYs: High-order Optimization of Rating Distance for Recommender Systems (JX0, YY0, HT, XT, JL0), pp. 525–534.
KDD-2017-XunLGZ #coordination #topic #word
Collaboratively Improving Topic Discovery and Word Embeddings by Coordinating Global and Local Contexts (GX, YL, JG0, AZ), pp. 535–543.
KDD-2017-YenHDRDX #classification #named #parallel
PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification (IEHY, XH, WD0, PR, ISD, EPX), pp. 545–553.
KDD-2017-YinBLG #clustering #graph #higher-order
Local Higher-Order Graph Clustering (HY, ARB, JL, DFG), pp. 555–564.
KDD-2017-ZangCF0 #memory management #modelling #process #social
Long Short Memory Process: Modeling Growth Dynamics of Microscopic Social Connectivity (CZ, PC0, CF, WZ0), pp. 565–574.
KDD-2017-ZhangC #predict
Weisfeiler-Lehman Neural Machine for Link Prediction (MZ, YC), pp. 575–583.
KDD-2017-Zhang0 #named #performance #similarity
EmbedJoin: Efficient Edit Similarity Joins via Embeddings (HZ, QZ0), pp. 585–594.
KDD-2017-ZhangLLYZH0 #detection #named #online #twitter
TrioVecEvent: Embedding-Based Online Local Event Detection in Geo-Tagged Tweet Streams (CZ0, LL, DL, QY0, HZ, TH, JH0), pp. 595–604.
KDD-2017-ZhangWLTL #clustering #graph #heuristic
Graph Edge Partitioning via Neighborhood Heuristic (CZ, FW, QL, ZGT, ZL), pp. 605–614.
KDD-2017-ZhangLZXXY #matrix #sketching
Randomization or Condensation?: Linear-Cost Matrix Sketching Via Cascaded Compression Sampling (KZ0, CL, JZ0, HX, EPX, JY), pp. 615–623.
KDD-2017-ZhaoZGLCLW
Tracking the Dynamics in Crowdfunding (HZ, HZ, YG, QL0, EC, HL, LW), pp. 625–634.
KDD-2017-ZhaoYLSL #network #recommendation
Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks (HZ, QY, JL, YS, DLL), pp. 635–644.
KDD-2017-ZhengP #kernel
Coresets for Kernel Regression (YZ, JMP), pp. 645–654.
KDD-2017-ZhouZYATDH #algorithm #graph
A Local Algorithm for Structure-Preserving Graph Cut (DZ, SZ, MYY, SA, HT, HD, JH), pp. 655–664.
KDD-2017-ZhouP #detection #robust
Anomaly Detection with Robust Deep Autoencoders (CZ, RCP), pp. 665–674.
KDD-2017-AgarwalBSJ #effectiveness #evaluation #feedback #multi #using
Effective Evaluation Using Logged Bandit Feedback from Multiple Loggers (AA, SB0, TS, TJ), pp. 687–696.
KDD-2017-AgrawalAKHLCK #named
Tripoles: A New Class of Relationships in Time Series Data (SA, GA, AK, WH, SL, SC, VK), pp. 697–706.
KDD-2017-Antikacioglu0 #recommendation
Post Processing Recommender Systems for Diversity (AA, RR0), pp. 707–716.
KDD-2017-Bauman0T #aspect-oriented #recommendation
Aspect Based Recommendations: Recommending Items with the Most Valuable Aspects Based on User Reviews (KB, BL0, AT), pp. 717–725.
KDD-2017-BlalockG #data mining #mining #named #performance
Bolt: Accelerated Data Mining with Fast Vector Compression (DWB, JVG), pp. 727–735.
KDD-2017-BojchevskiMG #clustering #modelling #robust #semistructured data
Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings (AB, YM, SG), pp. 737–746.
KDD-2017-CaoZZYPZARL #detection #mobile #modelling #named #type system
DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection (BC, LZ, CZ, PSY, AP, JZ, OA, KR, ADL), pp. 747–755.
KDD-2017-ChenG #optimisation #performance
Fast Newton Hard Thresholding Pursuit for Sparsity Constrained Nonconvex Optimization (JC, QG), pp. 757–766.
KDD-2017-ChenSSH #collaboration #on the
On Sampling Strategies for Neural Network-based Collaborative Filtering (TC0, YS, YS, LH), pp. 767–776.
KDD-2017-ChengLL #feature model #network #social
Unsupervised Feature Selection in Signed Social Networks (KC, JL, HL0), pp. 777–786.
KDD-2017-ChoiBSSS #graph #learning #named #representation
GRAM: Graph-based Attention Model for Healthcare Representation Learning (EC, MTB, LS, WFS, JS), pp. 787–795.
KDD-2017-Corbett-DaviesP #algorithm #cost analysis
Algorithmic Decision Making and the Cost of Fairness (SCD, EP, AF, SG, AH), pp. 797–806.
KDD-2017-DongJXC #case study #network
Structural Diversity and Homophily: A Study Across More Than One Hundred Big Networks (YD, RAJ, JX, NVC), pp. 807–816.
KDD-2017-EikmeierG #network
Revisiting Power-law Distributions in Spectra of Real World Networks (NE, DFG), pp. 817–826.
KDD-2017-FuA0TX #automation #detection #interactive #named
REMIX: Automated Exploration for Interactive Outlier Detection (YF, CCA, SP0, DST, HX), pp. 827–835.
KDD-2017-GabelKS #approximate #distributed
Anarchists, Unite: Practical Entropy Approximation for Distributed Streams (MG, DK, AS), pp. 837–846.
KDD-2017-HosseiniAKAFZR #recommendation
Recurrent Poisson Factorization for Temporal Recommendation (SAH, KA, AK, AA, MF, HZ, HRR), pp. 847–855.
KDD-2017-HuangZ #analysis #named
SPOT: Sparse Optimal Transformations for High Dimensional Variable Selection and Exploratory Regression Analysis (QH, MZ), pp. 857–865.
KDD-2017-JiaKNGCWK #incremental #predict
Incremental Dual-memory LSTM in Land Cover Prediction (XJ, AK, GN, JG, KC, PCW, VK), pp. 867–876.
KDD-2017-JiangSCRKH0 #corpus #named
MetaPAD: Meta Pattern Discovery from Massive Text Corpora (MJ0, JS, TC, XR, LMK, TPH, JH0), pp. 877–886.
KDD-2017-KimSYJ
Federated Tensor Factorization for Computational Phenotyping (YK, JS, HY, XJ), pp. 887–895.
KDD-2017-KomiyamaIANM #mining #multi #statistics #testing
Statistical Emerging Pattern Mining with Multiple Testing Correction (JK, MI, HA, TN, SiM), pp. 897–906.
KDD-2017-LabutovHBH #learning #mining
Semi-Supervised Techniques for Mining Learning Outcomes and Prerequisites (IL, YH0, PB, DH), pp. 907–915.
KDD-2017-LiGZXZ #analysis #development #perspective
Prospecting the Career Development of Talents: A Survival Analysis Perspective (HL, YG, HZ, HX, HZ), pp. 917–925.
KDD-2017-LiMGK #interactive #network
A Context-aware Attention Network for Interactive Question Answering (HL, MRM, YG, AK), pp. 927–935.
KDD-2017-LiuPH #distributed #learning #multi
Distributed Multi-Task Relationship Learning (SL, SJP, QH), pp. 937–946.
KDD-2017-LiuLLTZX #modelling
Point-of-Interest Demand Modeling with Human Mobility Patterns (YL, CL, XL, MT, HZ, HX), pp. 947–955.
KDD-2017-LiuSLMLX #functional #predict
Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion (JL, LS, QL, JM, YL, HX), pp. 957–966.
KDD-2017-MaMXLGSZ #data flow #semistructured data
Unsupervised Discovery of Drug Side-Effects from Heterogeneous Data Sources (FM, CM, HX, QL0, JG0, LS, AZ), pp. 967–976.
KDD-2017-MaurusP #detection #using
Let's See Your Digits: Anomalous-State Detection using Benford's Law (SM, CP), pp. 977–986.
KDD-2017-QiTWL #process
Mixture Factorized Ornstein-Uhlenbeck Processes for Time-Series Forecasting (GJQ, JT, JW, JL), pp. 987–995.
KDD-2017-QuR0 #automation #knowledge base
Automatic Synonym Discovery with Knowledge Bases (MQ, XR, JH0), pp. 997–1005.
KDD-2017-RaffN #distance #scalability #sequence
An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance (ER, CKN), pp. 1007–1015.
KDD-2017-RozenshteinTG #approach #social
Inferring the Strength of Social Ties: A Community-Driven Approach (PR, NT, AG), pp. 1017–1025.
KDD-2017-SaveskiPSDGXA #detection #network #random
Detecting Network Effects: Randomizing Over Randomized Experiments (MS, JPA, GSJ, WD, SG, YX, EMA), pp. 1027–1035.
KDD-2017-Scholtes #multi #network #visual notation
When is a Network a Network?: Multi-Order Graphical Model Selection in Pathways and Temporal Networks (IS), pp. 1037–1046.
KDD-2017-ShenHGC #comprehension #learning #named
ReasoNet: Learning to Stop Reading in Machine Comprehension (YS, PSH, JG, WC), pp. 1047–1055.
KDD-2017-ShinHKF #detection #incremental #named
DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams (KS, BH, JK, CF), pp. 1057–1066.
KDD-2017-SifferFTL #detection
Anomaly Detection in Streams with Extreme Value Theory (AS, PAF, AT, CL), pp. 1067–1075.
KDD-2017-SinghSGMC #evolution #modelling #network
Relay-Linking Models for Prominence and Obsolescence in Evolving Networks (MS0, RS, PG, AM0, SC), pp. 1077–1086.
KDD-2017-Song0H #clustering #named #parallel #performance
PAMAE: Parallel k-Medoids Clustering with High Accuracy and Efficiency (HS, JGL0, WSH), pp. 1087–1096.
KDD-2017-AmandH #composition #learning #metric
Sparse Compositional Local Metric Learning (JSA, JH), pp. 1097–1104.
KDD-2017-TangW0M #learning
End-to-end Learning for Short Text Expansion (JT, YW, KZ0, QM), pp. 1105–1113.
KDD-2017-TillmanMBG #graph
Construction of Directed 2K Graphs (BT, AM, CTB, MG), pp. 1115–1124.
KDD-2017-UstunR
Optimized Risk Scores (BU, CR), pp. 1125–1134.
KDD-2017-WangFWYDX #recommendation #sentiment
A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users (HW0, YF, QW, HY, CD, HX), pp. 1135–1143.
KDD-2017-WangGZOXLG #detection #network
Adversary Resistant Deep Neural Networks with an Application to Malware Detection (QW, WG, KZ, AGOI, XX, XL, CLG), pp. 1145–1153.
KDD-2017-WangSZTJZ #matrix #modelling #multi
Multi-Modality Disease Modeling via Collective Deep Matrix Factorization (QW, MS, LZ, PT0, SJ, JZ), pp. 1155–1164.
KDD-2017-WuSY #modelling #normalisation
Decomposed Normalized Maximum Likelihood Codelength Criterion for Selecting Hierarchical Latent Variable Models (TW, SS, KY), pp. 1165–1174.
KDD-2017-WuAL #detection
Structural Event Detection from Log Messages (FW0, PA, ZL), pp. 1175–1184.
KDD-2017-WuG #higher-order #markov #process
Retrospective Higher-Order Markov Processes for User Trails (TW, DFG), pp. 1185–1194.
KDD-2017-XieBLZ #distributed #learning #multi #privacy
Privacy-Preserving Distributed Multi-Task Learning with Asynchronous Updates (LX, IMB, KL, JZ), pp. 1195–1204.
KDD-2017-XingHC #representation #statistics
Evaluating U.S. Electoral Representation with a Joint Statistical Model of Congressional Roll-Calls, Legislative Text, and Voter Registration Data (ZX, SH, LC), pp. 1205–1214.
KDD-2017-YamadaLGCWKKMC #predict
Convex Factorization Machine for Toxicogenomics Prediction (MY, WL, AG, JC, KW, SAK, SK, HM, YC), pp. 1215–1224.
KDD-2017-YanCKR #big data #detection #distributed
Distributed Local Outlier Detection in Big Data (YY, LC, CK, EAR), pp. 1225–1234.
KDD-2017-YanCR #detection #scalability
Scalable Top-n Local Outlier Detection (YY, LC, EAR), pp. 1235–1244.
KDD-2017-YangBZY0 #approach #collaboration #learning #recommendation
Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation (CY, LB, CZ0, QY0, JH0), pp. 1245–1254.
KDD-2017-YangTH #multi
Multi-task Function-on-function Regression with Co-grouping Structured Sparsity (PY, QT, JH), pp. 1255–1264.
KDD-2017-YeZMPB #learning #network
Learning from Labeled and Unlabeled Vertices in Networks (WY0, LZ, DM, CP, CB), pp. 1265–1274.
KDD-2017-YinLN #bound #education #scalability
Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach (PY, PL0, TN), pp. 1275–1284.
KDD-2017-YouX0T #education #learning #multi #network
Learning from Multiple Teacher Networks (SY, CX0, CX0, DT), pp. 1285–1294.
KDD-2017-YuCSZY #behaviour #framework #social
A Temporally Heterogeneous Survival Framework with Application to Social Behavior Dynamics (LY, PC0, CS, TZ, SY), pp. 1295–1304.
KDD-2017-ZhanZ #induction #learning #multi
Inductive Semi-supervised Multi-Label Learning with Co-Training (WZ, MLZ), pp. 1305–1314.
KDD-2017-ZhangCTSS #effectiveness #learning #multi #named
LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity (YZ, RC, JT0, WFS, JS), pp. 1315–1324.
KDD-2017-ZhangWP #graph #visualisation
Visualizing Attributed Graphs via Terrain Metaphor (YZ, YW, SP0), pp. 1325–1334.
KDD-2017-ZhangWW
Achieving Non-Discrimination in Data Release (LZ0, YW, XW), pp. 1335–1344.
KDD-2017-AlbertKG #identification #network #scalability #using
Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale (AA, JK, MCG), pp. 1357–1366.
KDD-2017-AokiAM #predict
Luck is Hard to Beat: The Difficulty of Sports Prediction (RYSA, RMA, POSVdM), pp. 1367–1376.
KDD-2017-BaoHRLZ
Planning Bike Lanes based on Sharing-Bikes' Trajectories (JB0, TH, SR, YL, YZ0), pp. 1377–1386.
KDD-2017-BaylorBCFFHHIJK #framework #machine learning #named #platform
TFX: A TensorFlow-Based Production-Scale Machine Learning Platform (DB, EB, HTC, NF, CYF, ZH, SH, MI, VJ, LK0, CYK, LL, CM, ANM, NP, SR, SR0, SEW, MW, JW, XZ, MZ), pp. 1387–1395.
KDD-2017-BorisyukZK #named #performance #towards
LiJAR: A System for Job Application Redistribution towards Efficient Career Marketplace (FB, LZ, KK), pp. 1397–1406.
KDD-2017-ChojnackiDFSWZA #approach #comprehension
A Data Science Approach to Understanding Residential Water Contamination in Flint (AC, CD, AF, GS, JW, DTZ, JDA, EMS), pp. 1407–1416.
KDD-2017-CurtisG #estimation #scalability
Estimation of Recent Ancestral Origins of Individuals on a Large Scale (REC, ARG), pp. 1417–1425.
KDD-2017-DmitrievGKV #metric #online
A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled Experiments (PAD, SG, DWK, GJV), pp. 1427–1436.
KDD-2017-DongMSW
A Century of Science: Globalization of Scientific Collaborations, Citations, and Innovations (YD, HM, ZS, KW), pp. 1437–1446.
KDD-2017-DuZCT #interactive #named #performance
FIRST: Fast Interactive Attributed Subgraph Matching (BD, SZ, NC, HT), pp. 1447–1456.
KDD-2017-EmraniMX #learning #multi #using
Prognosis and Diagnosis of Parkinson's Disease Using Multi-Task Learning (SE, AM, WX), pp. 1457–1466.
KDD-2017-GanH #data mining #framework #mining #scalability
A Data Mining Framework for Valuing Large Portfolios of Variable Annuities (GG, JXH), pp. 1467–1475.
KDD-2017-GhoshCLMCBMR #automation #named #open source
GELL: Automatic Extraction of Epidemiological Line Lists from Open Sources (SG, PC, BLL, MSM, EC, JSB, MVM, NR), pp. 1477–1485.
KDD-2017-GolovinSMKKS #black box #optimisation
Google Vizier: A Service for Black-Box Optimization (DG, BS, SM, GK, JK, DS), pp. 1487–1495.
KDD-2017-GongNSG #health #predict
Predicting Clinical Outcomes Across Changing Electronic Health Record Systems (JJG, TN, PS, JVG), pp. 1497–1505.
KDD-2017-HouYSA #android #detection #named #network
HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network (SH, YY, YS, MA), pp. 1507–1515.
KDD-2017-JohariKPW #matter #testing #what #why
Peeking at A/B Tests: Why it matters, and what to do about it (RJ, PK, LP, DW0), pp. 1517–1525.
KDD-2017-KoutraDBWIFB #design #named #performance
PNP: Fast Path Ensemble Method for Movie Design (DK, AD, SB, UW, SI, CF, JB), pp. 1527–1536.
KDD-2017-KuangPCMP #scalability
Pharmacovigilance via Baseline Regularization with Large-Scale Longitudinal Observational Data (ZK, PLP, VSC, RM, DP), pp. 1537–1546.
KDD-2017-LiJZXLZZWZWXB #analysis #framework #named #platform
FLAP: An End-to-End Event Log Analysis Platform for System Management (TL0, YJ, CZ, BX0, ZL0, WZ, XZ, WW0, LZ, JW, LX, DB), pp. 1547–1556.
KDD-2017-LiuXOS #e-commerce #ranking
Cascade Ranking for Operational E-commerce Search (SL, FX, WO, LS), pp. 1557–1565.
KDD-2017-McNamaraVY #feature model #framework #multimodal
Developing a Comprehensive Framework for Multimodal Feature Extraction (QM, AdlV, TY), pp. 1567–1574.
KDD-2017-MottiniA #network #pointer #predict #using
Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction (AM, RAA), pp. 1575–1583.
KDD-2017-PaulLTYF #analysis #exclamation #named #sentiment #twitter #what
Compass: Spatio Temporal Sentiment Analysis of US Election What Twitter Says! (DP, FL0, MKT, XY, RF), pp. 1585–1594.
KDD-2017-PortnoffHDAM
Backpage and Bitcoin: Uncovering Human Traffickers (RSP, DYH, PD, SA, DM), pp. 1595–1604.
KDD-2017-PowerRWL
Not All Passes Are Created Equal: Objectively Measuring the Risk and Reward of Passes in Soccer from Tracking Data (PP, HR, XW, PL), pp. 1605–1613.
KDD-2017-QinKWRC #multi #named
MARAS: Signaling Multi-Drug Adverse Reactions (XQ0, TK, SW, EAR, LC), pp. 1615–1623.
KDD-2017-ShahYARSC
A Practical Exploration System for Search Advertising (PS, MY, SA, AR, BS, RC), pp. 1625–1631.
KDD-2017-SybrandtSS #automation #generative #named
MOLIERE: Automatic Biomedical Hypothesis Generation System (JS, MS, IS), pp. 1633–1642.
KDD-2017-TataPNCGGMSGMK #experience
Quick Access: Building a Smart Experience for Google Drive (ST, AP, MN, MC, JG, AG, AM, MS0, DG, CM, RK), pp. 1643–1651.
KDD-2017-TongCZCWYYL #approach #online #platform #predict #scalability
The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms (YT, YC, ZZ, LC0, JW0, QY0, JY, WL), pp. 1653–1662.
KDD-2017-VandalKGMNG #generative #image #named
DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution (TV, EK, SG, ARM, RRN, ARG), pp. 1663–1672.
KDD-2017-WangCWX #safety
No Longer Sleeping with a Bomb: A Duet System for Protecting Urban Safety from Dangerous Goods (JW, CC, JW, ZX), pp. 1673–1681.
KDD-2017-ZhangL #platform
A Quasi-experimental Estimate of the Impact of P2P Transportation Platforms on Urban Consumer Patterns (ZZ, BL), pp. 1683–1692.
KDD-2017-ZhouLZCLYCYCDQ #distributed #learning #named #parametricity
KunPeng: Parameter Server based Distributed Learning Systems and Its Applications in Alibaba and Ant Financial (JZ, XL, PZ, CC, LL, XY, QC, JY, XC, YD, Y(Q), pp. 1693–1702.
KDD-2017-ZhuSMYRZ
Deep Embedding Forest: Forest-based Serving with Deep Embedding Features (JZ0, YS, JCM, DY, HR, YZ), pp. 1703–1711.
KDD-2017-AhmedLSW #algorithm #industrial #modelling #problem #topic
A Practical Algorithm for Solving the Incoherence Problem of Topic Models In Industrial Applications (AA, JL, DS, YW), pp. 1713–1721.
KDD-2017-AndersonM #classification #machine learning
Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity (BA, DAM), pp. 1723–1732.
KDD-2017-BifetZFHZQHP #data type #evolution #mining #performance
Extremely Fast Decision Tree Mining for Evolving Data Streams (AB, JZ, WF0, CH, JZ, JQ, GH0, BP), pp. 1733–1742.
KDD-2017-ChahuaraGJR #optimisation #realtime #web
Real-Time Optimization of Web Publisher RTB Revenues (PC, NG, GJ, JMR), pp. 1743–1751.
KDD-2017-ChamberlainCLPD #predict #using
Customer Lifetime Value Prediction Using Embeddings (BPC, ÂC, CHBL, RP, MPD), pp. 1753–1762.
KDD-2017-ChengHHIMPRSSST #flexibility #framework #machine learning
TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks (HTC, ZH, LH, MI, CM, IP, GR, DS, JS, DS, YT, PT, MW, CX, JX), pp. 1763–1771.
KDD-2017-DadkhahiM #detection #embedded #learning #network
Learning Tree-Structured Detection Cascades for Heterogeneous Networks of Embedded Devices (HD, BMM), pp. 1773–1781.
KDD-2017-DebGIPVYY #automation #learning #named #network #policy #predict
AESOP: Automatic Policy Learning for Predicting and Mitigating Network Service Impairments (SD, ZG, SI, SCP, SV, HY, JY), pp. 1783–1792.
KDD-2017-GhoshDPYG #automation #categorisation #ecosystem
Automated Categorization of Onion Sites for Analyzing the Darkweb Ecosystem (SG, AD, PAP, VY, AG), pp. 1793–1802.
KDD-2017-HassanALT #automation #detection #towards
Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster (NH, FA, CL, MT), pp. 1803–1812.
KDD-2017-HillNLIV #algorithm #multi #optimisation #performance #realtime
An Efficient Bandit Algorithm for Realtime Multivariate Optimization (DNH, HN, YL0, AI, SVNV), pp. 1813–1821.
KDD-2017-IosifidisN #learning #scalability #sentiment
Large Scale Sentiment Learning with Limited Labels (VI, EN), pp. 1823–1832.
KDD-2017-ItoF #optimisation #predict
Optimization Beyond Prediction: Prescriptive Price Optimization (SI, RF), pp. 1833–1841.
KDD-2017-JanakiramanMO
Finding Precursors to Anomalous Drop in Airspeed During a Flight's Takeoff (VMJ, BLM, NCO), pp. 1843–1852.
KDD-2017-KittsKYZBPTTJ #multi
Ad Serving with Multiple KPIs (BK, MK, IY, YZ, GB, AP, ST, ET, SRJ), pp. 1853–1861.
KDD-2017-LiCCC
Discovering Pollution Sources and Propagation Patterns in Urban Area (XL, YC, GC, LC), pp. 1863–1872.
KDD-2017-LiHG #concept #enterprise #spreadsheet #using
Discovering Enterprise Concepts Using Spreadsheet Tables (KL, YH, KG), pp. 1873–1882.
KDD-2017-LiuJDJ #clustering #normalisation
Supporting Employer Name Normalization at both Entity and Cluster Level (QL, FJ, VSD, AJ), pp. 1883–1892.
KDD-2017-LouO #named #performance
BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (YL, MO), pp. 1893–1901.
KDD-2017-MaCZYSG #bidirectional #named #network #predict
Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks (FM, RC, JZ, QY, TS, JG0), pp. 1903–1911.
KDD-2017-MalloyBAKJ #graph #internet
Internet Device Graphs (MM, PB, ECA, JK, AJ), pp. 1913–1921.
KDD-2017-ManzoorA #exclamation
RUSH!: Targeted Time-limited Coupons via Purchase Forecasts (EAM, LA), pp. 1923–1931.
KDD-2017-OkuraTOT #recommendation
Embedding-based News Recommendation for Millions of Users (SO, YT, SO, AT), pp. 1933–1942.
KDD-2017-OvadiaHKLNPZS #learning
Learning to Count Mosquitoes for the Sterile Insect Technique (YO, YH, DK, JL, DN, RP, TZ, DS), pp. 1943–1949.
KDD-2017-PanZLCHHZ #network #scalability
An Intelligent Customer Care Assistant System for Large-Scale Cellular Network Diagnosis (LP, JZ, PPCL, HC, CH, CH, KZ), pp. 1951–1959.
KDD-2017-PanBHGP #design
Deep Design: Product Aesthetics for Heterogeneous Markets (YP, AB, JH, RG, PYP), pp. 1961–1970.
KDD-2017-QuiselFSK #data type
Collecting and Analyzing Millions of mHealth Data Streams (TQ, LF, AS, DCK), pp. 1971–1980.
KDD-2017-RistovskiGHT #integration #machine learning #optimisation #simulation
Dispatch with Confidence: Integration of Machine Learning, Optimization and Simulation for Open Pit Mines (KR, CG0, KH, HKT), pp. 1981–1989.
KDD-2017-RuizPWL #performance #quote #tool support
“The Leicester City Fairytale?”: Utilizing New Soccer Analytics Tools to Compare Performance in the 15/16 & 16/17 EPL Seasons (HR, PP, XW, PL), pp. 1991–2000.
KDD-2017-SalehianHL #approach #crowdsourcing #machine learning #scalability
Matching Restaurant Menus to Crowdsourced Food Data: A Scalable Machine Learning Approach (HS, PDH, CL), pp. 2001–2009.
KDD-2017-SharmaSKS #machine learning #problem
The Fake vs Real Goods Problem: Microscopy and Machine Learning to the Rescue (AS, VS, VK, LS), pp. 2011–2019.
KDD-2017-SoskaGRC #automation #identification
Automatic Application Identification from Billions of Files (KS, CSG, KAR, NC), pp. 2021–2030.
KDD-2017-TongKIYKSV #learning #multi
Learning to Generate Rock Descriptions from Multivariate Well Logs with Hierarchical Attention (BT, MK, MI, TY, YK, AS, RV), pp. 2031–2040.
KDD-2017-UesakaMSKMAY #learning #multi #visual notation
Multi-view Learning over Retinal Thickness and Visual Sensitivity on Glaucomatous Eyes (TU, KM, HS, TK, HM, RA, KY), pp. 2041–2050.
KDD-2017-WangYRTZYW #editing #learning #recommendation
Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors' Demonstration (XW, LY, KR, GT, WZ0, YY0, JW0), pp. 2051–2059.
KDD-2017-WangJY #framework #hybrid #modelling
A Hybrid Framework for Text Modeling with Convolutional RNN (CW, FJ, HY), pp. 2061–2069.
KDD-2017-WoodsAMM #feedback #modelling #predict #using
Formative Essay Feedback Using Predictive Scoring Models (BW, DA, SM, EM), pp. 2071–2080.
KDD-2017-XiaoGVT #behaviour #learning
Learning Temporal State of Diabetes Patients via Combining Behavioral and Demographic Data (HX, JG0, LHV, DST), pp. 2081–2089.
KDD-2017-YangZH #algorithm #predict #towards
Local Algorithm for User Action Prediction Towards Display Ads (HY, YZ, JH), pp. 2091–2099.
KDD-2017-YangKBSWKP #visual notation
Visual Search at eBay (FY, AK, YB, LS, QW, MHK, RP), pp. 2101–2110.
KDD-2017-YangDSZFXBM #data-driven #framework #process #recommendation
A Data-driven Process Recommender Framework (SY, XD, LS, YZ, RAF, HX, RSB, IM), pp. 2111–2120.
KDD-2017-YilmazEF #predict
Predicting Optimal Facility Location without Customer Locations (EY, SE, HF), pp. 2121–2130.
KDD-2017-YinCZ #comprehension #design #named #network #sequence
DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks (ZY, KhC, RZ), pp. 2131–2139.
KDD-2017-ZhangAQ #multi #predict
Stock Price Prediction via Discovering Multi-Frequency Trading Patterns (LZ, CCA, GJQ), pp. 2141–2149.
KDD-2017-ZhangHMWZFGY #combinator #modelling #optimisation #order
A Taxi Order Dispatch Model based On Combinatorial Optimization (LZ, TH, YM, GW, JZ, PF, PG, JY), pp. 2151–2159.
KDD-2017-ZhengBLL #detection #learning #metric
Contextual Spatial Outlier Detection with Metric Learning (GZ, SLB, TL, ZL), pp. 2161–2170.
KDD-2017-ZhengGNOY #bias
Resolving the Bias in Electronic Medical Records (KZ, JG, KYN, BCO, JWLY), pp. 2171–2180.
KDD-2017-ZhouXBWZLXLSG #analysis #named
STAR: A System for Ticket Analysis and Resolution (WZ, WX, RB, QW, CZ, TL0, JX0, ZL0, LS, GYG), pp. 2181–2190.
KDD-2017-ZhuJTPZLG
Optimized Cost per Click in Taobao Display Advertising (HZ, JJ, CT, FP, YZ, HL, KG), pp. 2191–2200.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.