BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
data (164)
system (26)
analyt (24)
semant (16)
base (16)

Stem big$ (all stems)

219 papers:

DATEDATE-2015-DubenSPYAEPP #big data #case study #energy #performance
Opportunities for energy efficient computing: a study of inexact general purpose processors for high-performance and big-data applications (PDD, JS, P, SY, JA, CCE, KVP, TNP), pp. 764–769.
DATEDATE-2015-KanounS #big data #concept #data type #detection #learning #online #scheduling #streaming
Big-data streaming applications scheduling with online learning and concept drift detection (KK, MvdS), pp. 1547–1550.
DATEDATE-2015-ParkAHYL #big data #energy #gpu #low cost #memory management #performance
Memory fast-forward: a low cost special function unit to enhance energy efficiency in GPU for big data processing (EP, JA, SH, SY, SL), pp. 1341–1346.
DATEDATE-2015-WangLZ #big data #named
SODA: software defined FPGA based accelerators for big data (CW, XL, XZ), pp. 884–887.
HTHT-2015-Smyth #big data
From Small Sensors to Big Data (BS), p. 101.
PODSPODS-2015-FanGCDL #big data #query
Querying Big Data by Accessing Small Data (WF, FG, YC, TD, PL), pp. 173–184.
PODSPODS-2015-Jordan #big data
Computational Thinking, Inferential Thinking and “Big Data” (MIJ), p. 1.
SIGMODSIGMOD-2015-CSKZYRPAKDRD #big data #industrial #what #why
Why Big Data Industrial Systems Need Rules and What We Can Do About It (PSGC, CS, KGK, HZ, FY, NR, SP, EA, GK, RD, VR, AD), pp. 265–276.
SIGMODSIGMOD-2015-DokaPTMK #big data #data analysis #multi #named #workflow
IReS: Intelligent, Multi-Engine Resource Scheduler for Big Data Analytics Workflows (KD, NP, DT, CM, NK), pp. 1451–1456.
SIGMODSIGMOD-2015-ElgamalYAMH #analysis #big data #component #distributed #named #scalability
sPCA: Scalable Principal Component Analysis for Big Data on Distributed Platforms (TE, MY, AA, WM, MH), pp. 79–91.
SIGMODSIGMOD-2015-HuangZYDLND0Z #big data #predict
Telco Churn Prediction with Big Data (YH, FZ, MY, KD, YL, BN, WD, QY, JZ), pp. 607–618.
SIGMODSIGMOD-2015-KhayyatIJMOPQ0Y #big data #named
BigDansing: A System for Big Data Cleansing (ZK, IFI, AJ, SM, MO, PP, JAQR, NT, SY), pp. 1215–1230.
SIGMODSIGMOD-2015-PerezSBPRSL #graph #interactive #named
Ringo: Interactive Graph Analytics on Big-Memory Machines (YP, RS, AB, RP, MR, PS, JL), pp. 1105–1110.
SIGMODSIGMOD-2015-RablDFSJ #big data
Just can’t get enough: Synthesizing Big Data (TR, MD, MF, SS, HAJ), pp. 1457–1462.
SIGMODSIGMOD-2015-SakuraiMF #mining
Mining and Forecasting of Big Time-series Data (YS, YM, CF), pp. 919–922.
SIGMODSIGMOD-2015-XiaoBME #metadata #summary #using
Even Metadata is Getting Big: Annotation Summarization using InsightNotes (DX, AB, TM, MYE), pp. 1409–1414.
SIGMODSIGMOD-2015-YuanWYC #big data #database #scalability
A Demonstration of Rubato DB: A Highly Scalable NewSQL Database System for OLTP and Big Data Applications (LYY, LW, JHY, YC), pp. 907–912.
SIGMODSIGMOD-2015-ZengADAS #analysis #big data #interactive #named #online
G-OLA: Generalized On-Line Aggregation for Interactive Analysis on Big Data (KZ, SA, AD, MA, IS), pp. 913–918.
VLDBVLDB-2015-AlyAMAHEO #adaptation #clustering
A Demonstration of AQWA: Adaptive Query-Workload-Aware Partitioning of Big Spatial Data (AMA, ASA, ARM, WGA, MSH, HE, MO), pp. 1968–1979.
VLDBVLDB-2015-AlyMHAOEQ #adaptation #clustering #named
AQWA: Adaptive Query-Workload-Aware Partitioning of Big Spatial Data (AMA, ARM, MSH, WGA, MO, HE, TQ), pp. 2062–2073.
VLDBVLDB-2015-Balazinska15a #big data #data analysis #industrial #problem #question
Big Data Research: Will Industry Solve all the Problems? (MB), pp. 2053–2064.
VLDBVLDB-2015-EldawyMJ #pipes and filters #visualisation
A Demonstration of HadoopViz: An Extensible MapReduce System for Visualizing Big Spatial Data (AE, MFM, CJ), pp. 1896–1907.
VLDBVLDB-2015-ElmoreDSBCGHHKK
A Demonstration of the BigDAWG Polystore System (AJE, JD, MS, MB, , VG, JH, BH, JK, TK, SM, DM, TGM, SP, JP, NT, MV, SZ), pp. 1908–1919.
VLDBVLDB-2015-HeGC #corpus #named #semantics #using
SEMA-JOIN: Joining Semantically-Related Tables Using Big Table Corpora (YH, KG, XC), pp. 1358–1369.
VLDBVLDB-2015-HuYYDCYGZ #big data #difference #framework #privacy
Differential Privacy in Telco Big Data Platform (XH, MY, JY, YD, LC, QY, HG, JZ), pp. 1692–1703.
VLDBVLDB-2015-LoghinTZOT #big data #performance
A Performance Study of Big Data on Small Nodes (DL, BMT, HZ, BCO, YMT), pp. 762–773.
VLDBVLDB-2015-SH #approach #big data #named #testing
CODD: A Dataless Approach to Big Data Testing (AS, JRH), pp. 2008–2019.
VLDBVLDB-2015-Walter #big data
Big Plateaus of Big Data on the Big Island (TW), pp. 2057–2068.
ICSMEICSME-2015-SvajlenkoR #clone detection #detection #tool support
Evaluating clone detection tools with BigCloneBench (JS, CKR), pp. 131–140.
ICALPICALP-v1-2015-Canonne #big data #testing
Big Data on the Rise? — Testing Monotonicity of Distributions (CLC), pp. 294–305.
HCIDUXU-DD-2015-FanHV #big data #risk management
Supply Chain Risk Management in the Era of Big Data (YF, LH, SV), pp. 283–294.
HCIHCI-DE-2015-BoscarioliBSB #challenge #concept #education #how #human-computer #industrial
How to Join Theoretical Concepts, Industry Needs and Innovative Technologies in HCI Courses? The Big Challenge of Teaching HCI (CB, SAB, MSS, SDJB), pp. 27–36.
HCIHIMI-IKD-2015-TrevisanPMG #big data #health #industrial #problem #security #visualisation
Big Data Visualization for Occupational Health and Security Problem in Oil and Gas Industry (DGT, NSP, LM, ACBG), pp. 46–54.
ICEISICEIS-v1-2015-Aghbari #big data #challenge #mining
Mining Big Data — Challenges and Opportunities (ZAA), pp. 379–384.
ICEISICEIS-v1-2015-AnjosFBSGM #big data #search-based
Genetic Mapping of Diseases through Big Data Techniques (JCSdA, BRF, JFB, RBS, CG, UM), pp. 279–286.
ICEISICEIS-v1-2015-EnriquezLGMC #identification #open data #problem
Entity Identification Problem in Big and Open Data (JGE, VL, MG, FJDM, MJEC), pp. 404–408.
ICMLICML-2015-HoangHL #big data #framework #modelling #probability #process
A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data (TNH, QMH, BKHL), pp. 569–578.
KDDKDD-2015-BifetMRHP #big data #classification #data type #evaluation #online #performance
Efficient Online Evaluation of Big Data Stream Classifiers (AB, GDFM, JR, GH, BP), pp. 59–68.
KDDKDD-2015-DhurandharGRME #big data #risk management
Big Data System for Analyzing Risky Procurement Entities (AD, BG, RKR, GM, ME), pp. 1741–1750.
KDDKDD-2015-FeldmanT #approximate #big data #constraints #matrix
More Constraints, Smaller Coresets: Constrained Matrix Approximation of Sparse Big Data (DF, TT), pp. 249–258.
KDDKDD-2015-HsiehLZ #big data #quality #recommendation
Inferring Air Quality for Station Location Recommendation Based on Urban Big Data (HPH, SDL, YZ), pp. 437–446.
KDDKDD-2015-John #big data #case study #how
How Artificial Intelligence and Big Data Created Rocket Fuel: A Case Study (GJ), p. 1629.
KDDKDD-2015-XingHDKWLZXKY #big data #distributed #framework #machine learning #named
Petuum: A New Platform for Distributed Machine Learning on Big Data (EPX, QH, WD, JKK, JW, SL, XZ, PX, AK, YY), pp. 1335–1344.
KDDKDD-2015-YangLJ #big data #data analysis #optimisation
Big Data Analytics: Optimization and Randomization (TY, QL, RJ), p. 2327.
KDDKDD-2015-ZhengYLLSCL #big data #fine-grained #quality
Forecasting Fine-Grained Air Quality Based on Big Data (YZ, XY, ML, RL, ZS, EC, TL), pp. 2267–2276.
POPLPOPL-2015-RaychevVK #predict
Predicting Program Properties from “Big Code” (VR, MTV, AK), pp. 111–124.
SACSAC-2015-KaplanisKSMT
HB+tree: use hadoop and HBase even your data isn’t that big (AK, MK, SS, CM, GT), pp. 973–980.
SACSAC-2015-Rekha #big data #detection #performance #using
A fast support vector data description system for anomaly detection using big data (AGR), pp. 931–932.
ICSEICSE-v2-2015-NagappanM #big data #re-engineering
Big(ger) Data in Software Engineering (MN, MM), pp. 957–958.
ICSEICSE-v2-2015-ZhouLZLLQ #big data #empirical #framework #quality
An Empirical Study on Quality Issues of Production Big Data Platform (HZ, JGL, HZ, HL, HL, TQ), pp. 17–26.
ASPLOSASPLOS-2015-Gidra0SSN #big data #garbage collection #named
NumaGiC: a Garbage Collector for Big Data on Big NUMA Machines (LG, GT, JS, MS, NN), pp. 661–673.
ASPLOSASPLOS-2015-NguyenWBFHX #big data #bound #compilation #named #runtime
FACADE: A Compiler and Runtime for (Almost) Object-Bounded Big Data Applications (KN, KW, YB, LF, JH, G(X), pp. 675–690.
ICSTICST-2015-LiEGO #big data #framework #scalability
A Scalable Big Data Test Framework (NL, AE, YG, JO), pp. 1–2.
ASEASE-2014-StephenSSE #big data #program analysis
Program analysis for secure big data processing (JJS, SS, RS, PTE), pp. 277–288.
CASECASE-2014-ChangYLC #behaviour #mining #towards #video
Toward mining anomalous behavior from big moving trajectories in surveillance video (CWC, MHY, CCL, KTC), pp. 1121–1126.
DATEDATE-2014-0002LLCXY #big data #data analysis #energy #network #performance
Energy efficient neural networks for big data analytics (YW, BL, RL, YC, NX, HY), pp. 1–2.
DATEDATE-2014-KimKGH #energy #performance
Utilization-aware load balancing for the energy efficient operation of the big.LITTLE processor (MK, KK, JRG, SH), pp. 1–4.
DocEngDocEng-2014-SchmitzP #big data #tool support
Humanist-centric tools for big data: berkeley prosopography services (PS, LP), pp. 179–188.
HTHT-2014-Hidalgo #big data #comprehension #development #network #social #visualisation
Big data visualization engines for understanding the development of countries, social networks, culture and cities (CAH), p. 3.
PODSPODS-2014-FanGL #big data #independence #on the #query
On scale independence for querying big data (WF, FG, LL), pp. 51–62.
SIGMODSIGMOD-2014-ChenGLMPVK #manycore #named #scalability
Palette: enabling scalable analytics for big-memory, multicore machines (FC, TG, JL, MM, JP, KV, MK), pp. 705–708.
SIGMODSIGMOD-2014-FanWW #bound #graph #query
Querying big graphs within bounded resources (WF, XW, YW), pp. 301–312.
SIGMODSIGMOD-2014-HalperinACCKMORWWXBHS #big data #data transformation
Demonstration of the Myria big data management service (DH, VTdA, LLC, SC, PK, DM, JO, VR, JW, AW, SX, MB, BH, DS), pp. 881–884.
SIGMODSIGMOD-2014-IstvanWA #big data #data flow
Histograms as a side effect of data movement for big data (ZI, LW, GA), pp. 1567–1578.
SIGMODSIGMOD-2014-LeFevreSHTPC #big data #data analysis #design #physics
Opportunistic physical design for big data analytics (JL, JS, HH, JT, NP, MJC), pp. 851–862.
SIGMODSIGMOD-2014-LeFevreSHTPC14a #big data #multi #named #query
MISO: souping up big data query processing with a multistore system (JL, JS, HH, JT, NP, MJC), pp. 1591–1602.
SIGMODSIGMOD-2014-OzcanTAKMRW #big data #question
Are we experiencing a big data bubble? (, NT, DJA, MK, CM, KR, JLW), pp. 1407–1408.
SIGMODSIGMOD-2014-PapailiouTKKK #data transformation #graph #performance #rdf
H2RDF+: an efficient data management system for big RDF graphs (NP, DT, IK, PK, NK), pp. 909–912.
SIGMODSIGMOD-2014-QinYCCZL #graph #pipes and filters #scalability
Scalable big graph processing in MapReduce (LQ, JXY, LC, HC, CZ, XL), pp. 827–838.
SIGMODSIGMOD-2014-SolimanAREGSCGRPWNKB #architecture #big data #composition #named #query
Orca: a modular query optimizer architecture for big data (MAS, LA, VR, AEH, ZG, ES, GCC, CGA, FR, MP, FW, SN, KK, RB), pp. 337–348.
SIGMODSIGMOD-2014-ZoumpatianosIP #big data #interactive
Indexing for interactive exploration of big data series (KZ, SI, TP), pp. 1555–1566.
VLDBVLDB-2014-CaoWR #big data #data type #interactive
Interactive Outlier Exploration in Big Data Streams (LC, QW, EAR), pp. 1621–1624.
VLDBVLDB-2014-CetintemelDKMMMPSSTTWZ #named #streaming
S-Store: A Streaming NewSQL System for Big Velocity Applications (, JD, TK, SM, DM, JM, AP, MS, ES, NT, KT, HW, SBZ), pp. 1633–1636.
VLDBVLDB-2014-Jiang0OTW #big data #named #scalability
epiC: an Extensible and Scalable System for Processing Big Data (DJ, GC, BCO, KLT, SW), pp. 541–552.
VLDBVLDB-2014-KhanE
Systems for Big-Graphs (AK, SE), pp. 1709–1710.
VLDBVLDB-2014-LeiZRE #big data #framework #query
Redoop Infrastructure for Recurring Big Data Queries (CL, ZZ, EAR, MYE), pp. 1589–1592.
VLDBVLDB-2014-LiLZ #big data #challenge #enterprise
Enterprise Search in the Big Data Era: Recent Developments and Open Challenges (YL, ZL, HZ), pp. 1717–1718.
VLDBVLDB-2014-Markl #big data #data analysis #declarative #independence
Breaking the Chains: On Declarative Data Analysis and Data Independence in the Big Data Era (VM), pp. 1730–1733.
VLDBVLDB-2014-SimmenSDHLMSTX #big data #graph #scalability
Large-Scale Graph Analytics in Aster 6: Bringing Context to Big Data Discovery (DES, KS, JD, YH, SL, AM, VS, MT, YX), pp. 1405–1416.
VLDBVLDB-2014-SuchanekW #big data #data analysis #knowledge base
Knowledge Bases in the Age of Big Data Analytics (FMS, GW), pp. 1713–1714.
VLDBVLDB-2014-SuSGOS #big data #java
Changing Engines in Midstream: A Java Stream Computational Model for Big Data Processing (XS, GS, BG, BO, PS), pp. 1343–1354.
VLDBVLDB-2014-WuC0SCB #big data #named
yzBigData: Provisioning Customizable Solution for Big Data (SW, GC, KC, LS, HC, HB), pp. 1778–1783.
VLDBVLDB-2014-YanCZ #bound
Error-bounded Sampling for Analytics on Big Sparse Data (YY, LJC, ZZ), pp. 1508–1519.
VLDBVLDB-2014-YuYWLC #big data #classification #design #detection #power management
Big Data Small Footprint: The Design of A Low-Power Classifier for Detecting Transportation Modes (MCY, TY, SCW, CJL, EYC), pp. 1429–1440.
VLDBVLDB-2014-ZhangJSR #big data #recommendation #using
Getting Your Big Data Priorities Straight: A Demonstration of Priority-based QoS using Social-network-driven Stock Recommendation (RZ, RJ, PS, LR), pp. 1665–1668.
VLDBVLDB-2015-BuBJCC14 #data flow #graph #named
Pregelix: Big(ger) Graph Analytics on a Dataflow Engine (YB, VRB, JJ, MJC, TC), pp. 161–172.
VLDBVLDB-2015-GraefeVKKTLV14 #big data #in memory #performance
In-Memory Performance for Big Data (GG, HV, HK, HAK, JT, ML, ACV), pp. 37–48.
ESOPESOP-2014-PoulsenM #semantics
Deriving Pretty-Big-Step Semantics from Small-Step Semantics (CBP, PDM), pp. 270–289.
ICSMEICSME-2014-SvajlenkoIKRM #benchmark #big data #metric #towards
Towards a Big Data Curated Benchmark of Inter-project Code Clones (JS, JFI, IK, CKR, MMM), pp. 476–480.
FLOPSFLOPS-2014-Riesco #debugging #declarative #maude #semantics #using
Using Big-Step and Small-Step Semantics in Maude to Perform Declarative Debugging (AR), pp. 52–68.
CHICHI-2014-ReetzG #gesture #identification
Making big gestures: effects of gesture size on observability and identification for co-located group awareness (AR, CG), pp. 4087–4096.
HCIDUXU-DI-2014-Bockermann #approach #big data #data analysis #programming #visual notation
A Visual Programming Approach to Big Data Analytics (CB), pp. 393–404.
EDOCEDOC-2014-Ludwig #big data #effectiveness #perspective
Managing Big Data Effectively — A Cloud Provider and a Cloud Consumer Perspective (HL), p. 91.
EDOCEDOC-2014-MukkamalaHV #analysis #sentiment #social
Fuzzy-Set Based Sentiment Analysis of Big Social Data (RRM, AH, RKV), pp. 71–80.
CIKMCIKM-2014-WangLBLGZ #big data #named
Cleanix: A Big Data Cleaning Parfait (HW, ML, YB, JL, HG, JZ), pp. 2024–2026.
CIKMCIKM-2014-YuanWYC #big data #database #grid #scalability #staged
Rubato DB: A Highly Scalable Staged Grid Database System for OLTP and Big Data Applications (LYY, LW, JHY, YC), pp. 1–10.
ECIRECIR-2014-CarageaWCWRCWG #big data #dataset
CiteSeer x : A Scholarly Big Dataset (CC, JW, AMC, KW, JPFR, HHC, ZW, CLG), pp. 311–322.
ICMLICML-c2-2014-Chen0 #big data #learning #modelling #topic #using
Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data (ZC, BL), pp. 703–711.
ICMLICML-c2-2014-DefazioDC #big data #incremental #named #performance #problem
Finito: A faster, permutable incremental gradient method for big data problems (AD, JD, TSC), pp. 1125–1133.
ICMLICML-c2-2014-TanTWVP #matrix
Riemannian Pursuit for Big Matrix Recovery (MT, IWT, LW, BV, SJP), pp. 1539–1547.
KDDKDD-2014-AhmedDNK #framework #graph
Graph sample and hold: a framework for big-graph analytics (NKA, NGD, JN, RRK), pp. 1446–1455.
KDDKDD-2014-AnagnostopoulosT #big data #scalability
Scaling out big data missing value imputations: pythia vs. godzilla (CA, PT), pp. 651–660.
KDDKDD-2014-Chen0 #big data #documentation #mining #topic
Mining topics in documents: standing on the shoulders of big data (ZC, BL), pp. 1116–1125.
KDDKDD-2014-CormodeD #big data #tutorial
Sampling for big data: a tutorial (GC, NGD), p. 1975.
KDDKDD-2014-Eagle #big data #social
Big data for social good (NE), p. 1522.
KDDKDD-2014-FengGBEHM #big data #database #experience #in memory #query
Management and analytic of biomedical big data with cloud-based in-memory database and dynamic querying: a hands-on experience with real-world data (MF, MG, TB, JE, IH, RM), p. 1970.
KEODKEOD-2014-Bergamaschi #big data #challenge #integration #state of the art
Big Data Integration — State of the Art & Challenges (SB), pp. 1–7.
KEODKEOD-2014-SurynekS #big data #challenge #graph #information management #logic #perspective #reasoning
Theoretical Challenges in Knowledge Discovery in Big Data — A Logic Reasoning and a Graph Theoretical Point of View (PS, PS), pp. 327–332.
KEODKEOD-2014-Talia #big data #data mining #distributed #information management #mining
Big Data Mining Services and Distributed Knowledge Discovery Applications on Clouds (DT), pp. 1–5.
KMISKMIS-2014-HeavinDA #big data #information management
Small Data to Big Data — The Information Systems (IS) Continuum (CH, MD, FA), pp. 289–297.
SIGIRSIGIR-2014-Williams #big data #how
The data revolution: how companies are transforming with big data (HEW), pp. 525–526.
SACSAC-2014-EvermannA #algorithm #big data #implementation #mining #process
Big data meets process mining: implementing the alpha algorithm with map-reduce (JE, GA), pp. 1414–1416.
FSEFSE-2014-Lam #named #network #social
Omlet: a revolution against big-brother social networks (invited talk) (MSL), p. 1.
HPCAHPCA-2014-WangZLZYHGJSZZLZLQ #benchmark #big data #internet #metric #named
BigDataBench: A big data benchmark suite from internet services (LW, JZ, CL, YZ, QY, YH, WG, ZJ, YS, SZ, CZ, GL, KZ, XL, BQ), pp. 488–499.
ICLPICLP-J-2014-TachmazidisAF #big data #performance #semantics
Efficient Computation of the Well-Founded Semantics over Big Data (IT, GA, WF), pp. 445–459.
ECSAECSA-2013-CuestaMF #architecture #realtime #semantics #towards
Towards an Architecture for Managing Big Semantic Data in Real-Time (CEC, MAMP, JDF), pp. 45–53.
HTHT-2013-LiangCCK #how #modelling #social #social media
How big is the crowd?: event and location based population modeling in social media (YL, JC, ZC, KYK), pp. 99–108.
SIGMODSIGMOD-2013-AboulnagaB #big data #data analysis
Workload management for big data analytics (AA, SB), pp. 929–932.
SIGMODSIGMOD-2013-BarnettCDDFGMP #big data #exclamation #interactive
Stat!: an interactive analytics environment for big data (MB, BC, RD, SMD, DF, JG, PM, JCP), pp. 1013–1016.
SIGMODSIGMOD-2013-CondieMPW #big data #machine learning
Machine learning for big data (TC, PM, NP, MW), pp. 939–942.
SIGMODSIGMOD-2013-GhazalRHRPCJ #benchmark #big data #data analysis #industrial #metric #named #standard #towards
BigBench: towards an industry standard benchmark for big data analytics (AG, TR, MH, FR, MP, AC, HAJ), pp. 1197–1208.
SIGMODSIGMOD-2013-LuoT0N
Finding time period-based most frequent path in big trajectory data (WL, HT, LC, LMN), pp. 713–724.
SIGMODSIGMOD-2013-MishneDLSL #architecture #big data #performance #query #realtime #twitter
Fast data in the era of big data: Twitter’s real-time related query suggestion architecture (GM, JD, ZL, AS, JL), pp. 1147–1158.
SIGMODSIGMOD-2013-NazarukR #big data
Big data in capital markets (AN, MR), pp. 917–918.
SIGMODSIGMOD-2013-SuchanekW #big data
Knowledge harvesting in the big-data era (FMS, GW), pp. 933–938.
SIGMODSIGMOD-2013-SumbalyKS #big data #ecosystem
The big data ecosystem at LinkedIn (RS, JK, SS), pp. 1125–1134.
VLDBVLDB-2013-BediniEV #big data #case study #framework #scalability
The Trento Big Data Platform for Public Administration and Large Companies: Use cases and Opportunities (IB, BE, YV), pp. 1166–1167.
VLDBVLDB-2013-BellamkondaLJZLC #adaptation #big data #execution #parallel
Adaptive and Big Data Scale Parallel Execution in Oracle (SB, HGL, UJ, YZ, VL, TC), pp. 1102–1113.
VLDBVLDB-2013-ChandramouliGQ #big data #in the cloud #scalability
Scalable Progressive Analytics on Big Data in the Cloud (BC, JG, AQ), pp. 1726–1737.
VLDBVLDB-2013-ChirkovaY #question #what
Big and Useful: What’s in the Data for Me? (RC, JY), pp. 1390–1391.
VLDBVLDB-2013-DongS #big data #integration
Big Data Integration (XLD, DS), pp. 1188–1189.
VLDBVLDB-2013-FanGN #big data #preprocessor #query
Making Queries Tractable on Big Data with Preprocessing (WF, FG, FN), pp. 685–696.
VLDBVLDB-2013-Franceschini #approach #big data #how #open source
How to maximize the value of big data with the open source SpagoBI suite through a comprehensive approach (MF), pp. 1170–1171.
VLDBVLDB-2013-Hoppe #automation #big data #learning #ontology #web
Automatic ontology-based User Profile Learning from heterogeneous Web Resources in a Big Data Context (AH), pp. 1428–1433.
VLDBVLDB-2013-LeeL #clustering #graph #query #rdf #scalability #semantics
Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning (KL, LL), pp. 1894–1905.
VLDBVLDB-2013-RamazzinaBS #framework
A New Service for Customer Care Based on the TrentoRise BigData Platform (SR, CLB, DS), pp. 1162–1163.
VLDBVLDB-2013-SathiamoorthyAPDVCB #big data #novel
XORing Elephants: Novel Erasure Codes for Big Data (MS, MA, DSP, AGD, RV, SC, DB), pp. 325–336.
VLDBVLDB-2013-TranBD #big data #design #problem #query
Designing Query Optimizers for Big Data Problems of The Future (NT, SB, JD), pp. 1168–1169.
ESOPESOP-2013-Chargueraud #semantics
Pretty-Big-Step Semantics (AC), pp. 41–60.
ICALPICALP-v2-2013-BachrachP #big data #performance #pseudo #recommendation #sketching #using
Sketching for Big Data Recommender Systems Using Fast Pseudo-random Fingerprints (YB, EP), pp. 459–471.
IFMIFM-2013-Ciobaca #automation #semantics
From Small-Step Semantics to Big-Step Semantics, Automatically (SC), pp. 347–361.
GCMGCM-J-2012-FaithfullPH #development #graph
Big Red: A Development Environment for Bigraphs (AJF, GP, TTH).
HCIDUXU-WM-2013-LiuVMM #big data #design #experience #framework #interactive #mining #visualisation
Designing Discovery Experience for Big Data Interaction: A Case of Web-Based Knowledge Mining and Interactive Visualization Platform (QL, MV, KPCM, AFM), pp. 543–552.
HCIHIMI-LCCB-2013-FlachsbartEH #human-computer #mobile #question
Are HCI Issues a Big Factor in Supply Chain Mobile Apps? (BF, CCE, MGH), pp. 450–456.
CIKMCIKM-2013-Giles #big data #data mining #information management #mining
Scholarly big data: information extraction and data mining (CLG), pp. 1–2.
CIKMCIKM-2013-LuoFHWB #bisimulation #graph #memory management #reduction
External memory K-bisimulation reduction of big graphs (YL, GHLF, JH, YW, PDB), pp. 919–928.
KDDKDD-2013-CannyZ #big data #data analysis
Big data analytics with small footprint: squaring the cloud (JC, HZ), pp. 95–103.
KDDKDD-2013-GetoorM #big data
Entity resolution for big data (LG, AM), p. 1527.
KDDKDD-2013-Neumann #big data #problem #using
Using “big data” to solve “small data” problems (CN), p. 1140.
KDDKDD-2013-RamanSGJ #big data #pipes and filters
Beyond myopic inference in big data pipelines (KR, AS, JG, TJ), pp. 86–94.
KDDKDD-2013-SunR #big data #data analysis
Big data analytics for healthcare (JS, CKR), p. 1525.
KDDKDD-2013-ZhengLH #big data #named #quality
U-Air: when urban air quality inference meets big data (YZ, FL, HPH), pp. 1436–1444.
MLDMMLDM-2013-Suthaharan #big data #classification #network
A Single-Domain, Representation-Learning Model for Big Data Classification of Network Intrusion (SS), pp. 296–310.
SEKESEKE-2013-Khoshgoftaar #big data #challenge
Overcoming Big Data Challenges (TMK).
SIGIRSIGIR-2013-Smith #big data #multi
Riding the multimedia big data wave (JRS), pp. 1–2.
MODELSMoDELS-2013-FondementMTWF #metamodelling
Big Metamodels Are Evil — Package Unmerge — A Technique for Downsizing Metamodels (FF, PAM, LT, BW, GF), pp. 138–153.
MODELSMoDELS-2013-FondementMTWF #metamodelling
Big Metamodels Are Evil — Package Unmerge — A Technique for Downsizing Metamodels (FF, PAM, LT, BW, GF), pp. 138–153.
ICSEICSE-2013-ShangJHAHM #big data #data analysis #developer
Assisting developers of big data analytics applications when deploying on hadoop clouds (WS, ZMJ, HH, BA, AEH, PM), pp. 402–411.
HPCAHPCA-2013-ZhuR #energy #mobile #web
High-performance and energy-efficient mobile web browsing on big/little systems (YZ, VJR), pp. 13–24.
HPDCHPDC-2013-XuS0 #big data #named
IBIS: interposed big-data I/O scheduler (YX, AS, MZ), pp. 109–110.
ISMMISMM-2013-BuBXC #big data #design
A bloat-aware design for big data applications (YB, VRB, G(X, MJC), pp. 119–130.
PPoPPPPoPP-2013-ParkST #parallel #programming
Parallel programming with big operators (CP, GLSJ, JBT), pp. 293–294.
ICLPICLP-J-2013-CostaV #named
BigYAP: Exo-compilation meets UDI (VSC, DV), pp. 799–813.
WICSA-ECSAWICSA-ECSA-2012-BegoliH #big data #design #effectiveness #information management
Design Principles for Effective Knowledge Discovery from Big Data (EB, JLH), pp. 215–218.
DACDAC-2012-Jeff #architecture #migration #multi
Big.LITTLE system architecture from ARM: saving power through heterogeneous multiprocessing and task context migration (BJ), pp. 1143–1146.
DocEngDocEng-2012-JanssenSBWS #documentation #named
Receipts2Go: the big world of small documents (BJ, ES, EAB, PW, MAS), pp. 121–124.
PODSPODS-2012-Chaudhuri #big data #data transformation #research #what
What next?: a half-dozen data management research goals for big data and the cloud (SC), pp. 1–4.
SIGMODSIGMOD-2012-ChengQR #big data #data analysis #named
GLADE: big data analytics made easy (YC, CQ, FR), pp. 697–700.
VLDBVLDB-2012-AlsubaieeAABBBCGHKLOPVW #analysis #big data #data transformation #named #open source
ASTERIX: An Open Source System for “Big Data” Management and Analysis (SA, YA, HA, AB, VRB, YB, MJC, RG, ZH, YSK, CL, NO, PP, RV, JW), pp. 1898–1901.
VLDBVLDB-2012-ChenAK #big data #interactive #pipes and filters
Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads (YC, SA, RHK), pp. 1802–1813.
VLDBVLDB-2012-DittrichQ #big data #performance #pipes and filters
Efficient Big Data Processing in Hadoop MapReduce (JD, JAQR), pp. 2014–2015.
VLDBVLDB-2012-LabrinidisJ #big data #challenge
Challenges and Opportunities with Big Data (AL, HVJ), pp. 2032–2033.
VLDBVLDB-2012-RablSJGMM #big data #challenge #enterprise #performance
Solving Big Data Challenges for Enterprise Application Performance Management (TR, MS, HAJ, SGV, VMM, SM), pp. 1724–1735.
VLDBVLDB-2012-Shim #algorithm #big data #data analysis #pipes and filters
MapReduce Algorithms for Big Data Analysis (KS), pp. 2016–2017.
VLDBVLDB-2012-XuLGC #analysis #big data #clustering #in the cloud #interactive #named #visual notation
CloudVista: Interactive and Economical Visual Cluster Analysis for Big Data in the Cloud (HX, ZL, SG, KC), pp. 1886–1889.
VLDBVLDB-2012-ZhangY #array #optimisation
Optimizing I/O for Big Array Analytics (YZ, JY), pp. 764–775.
CIKMCIKM-2012-TanLN #data analysis #named
CloST: a hadoop-based storage system for big spatio-temporal data analytics (HT, WL, LMN), pp. 2139–2143.
ICMLICML-2012-KleinerTSJ #big data
The Big Data Bootstrap (AK, AT, PS, MIJ), p. 232.
KDDKDD-2012-Jordan #big data #divide and conquer #statistics
Divide-and-conquer and statistical inference for big data (MIJ), p. 4.
KDDKDD-2012-Kitsuregawa #big data
Building an engine for big data (MK), p. 223.
SIGIRSIGIR-2012-Baeza-YatesM #web
(Big) usage data in web search (RABY, YM), pp. 1181–1182.
ECOOPECOOP-2012-Ancona #induction #object-oriented #semantics
Soundness of Object-Oriented Languages with Coinductive Big-Step Semantics (DA), pp. 459–483.
RERE-2012-Cleland-HuangMMA #recommendation #traceability
Breaking the big-bang practice of traceability: Pushing timely trace recommendations to project stakeholders (JCH, PM, MM, SA), pp. 231–240.
ICSEICSE-2012-Faghih #modelling
Model translations among big-step modeling languages (FF), pp. 1555–1558.
HPDCHPDC-2012-Budiu #artificial reality #big data #framework
Putting a “big-data” platform to good use: training kinect (MB), pp. 1–2.
VLDBVLDB-2011-Campbell #big data #question
Is It Still “Big Data” If It Fits In My Pocket? (DC), p. 694.
FASEFASE-2011-EsmaeilsabzaliD #modelling #quality #semantics
Semantic Quality Attributes for Big-Step Modelling Languages (SE, NAD), pp. 65–80.
CEFPCEFP-2011-Pali
Extending Little Languages into Big Systems (GP), pp. 499–516.
HCIHIMI-v2-2011-TakahashiT #information management
Big Fat Wand: A Laser Projection System for Information Sharing in a Workspace (TT, TT), pp. 403–410.
GPCEGPCE-2011-EsmaeilsabzaliFA #aspect-oriented #automation #modelling #monitoring
Monitoring aspects for the customization of automatically generated code for big-step models (SE, BF, JMA), pp. 117–126.
SIGMODSIGMOD-2010-Amer-YahiaDKKF #algorithm #big data
Crowds, clouds, and algorithms: exploring the human side of “big data” applications (SAY, AD, JMK, NK, MJF), pp. 1259–1260.
VLDBVLDB-2010-AgrawalDA #big data #in the cloud #question
Big Data and Cloud Computing: New Wine or just New Bottles? (DA, SD, AEA), pp. 1647–1648.
ESOPESOP-2010-NakataU #hoare #induction #logic #semantics
A Hoare Logic for the Coinductive Trace-Based Big-Step Semantics of While (KN, TU), pp. 488–506.
FASEFASE-2010-EsmaeilsabzaliD #modelling #semantics
Prescriptive Semantics for Big-Step Modelling Languages (SE, NAD), pp. 158–172.
RERE-2010-MavinW #approach #requirements
Big Ears (The Return of “Easy Approach to Requirements Engineering”) (AM, PW), pp. 277–282.
FSEFSE-2010-Eagle #big data #development #social
Big data, global development, and complex social systems (NE), pp. 3–4.
ICSTSAT-2010-Naveh #constraints #difference
The Big Deal: Applying Constraint Satisfaction Technologies Where It Makes the Difference (YN), pp. 1–7.
VLDBVLDB-2009-CohenDDHW #analysis #big data
MAD Skills: New Analysis Practices for Big Data (JC, BD, MD, JMH, CW), pp. 1481–1492.
HCIHCI-AUII-2009-FarajMV #mobile #named
BigKey: A Virtual Keyboard for Mobile Devices (KAF, MM, NV), pp. 3–10.
HCIHCI-NT-2009-BellottiFAS #design #evaluation
User-Centered Design and Evaluation — The Big Picture (VB, SF, TA, SS), pp. 214–223.
RERE-2009-EsmaeilsabzaliDAN #modelling #semantics
Semantic Criteria for Choosing a Language for Big-Step Models (SE, NAD, JMA, JN), pp. 181–190.
ASPLOSASPLOS-2009-AleenC #analysis #commutative #parallel #program transformation
Commutativity analysis for software parallelization: letting program transformations see the big picture (FA, NC), pp. 241–252.
VLDBVLDB-2008-DittrichBS #how #question
Dwarfs in the rearview mirror: how big are they really? (JD, LB, MAVS), pp. 1586–1597.
SACSAC-2008-GronauR #implementation #information management
Information systems implementation: the big picture (NG, MR), pp. 1077–1078.
SACSAC-2008-MattosLFM #clustering #documentation #framework #named
BigBatch: a document processing platform for clusters and grids (GdOM, RDL, AdAF, FMJM), pp. 434–441.
SPLCSPLC-2008-Krueger #framework #product line
The BigLever Software Gears Unified Software Product Line Engineering Framework (CWK), p. 353.
CGOCGO-2007-Fang #parallel #programming
Parallel Programming Environment: A Key to Translating Tera-Scale Platforms into a Big Success (JF), p. 18.
PPoPPPPoPP-2007-Fang #parallel #programming
Parallel programming environment: a key to translating tera-scale platforms into a big success (JZF), p. 1.
DATEDATE-2006-MarculescuRS #design #idea #network #question
Is “Network” the next “Big Idea” in design? (RM, JMR, ALSV), pp. 254–256.
ESOPESOP-2006-Leroy #induction #semantics
Coinductive Big-Step Operational Semantics (XL), pp. 54–68.
DocEngDocEng-2005-LinsA #documentation #named
BigBatch: a toolbox for monochromatic documents (RDL, BTÁ), pp. 239–240.
CSEETCSEET-2005-BleekLS #education #experience #industrial #re-engineering
Transferring Experience from Software Engineering Training in Industry to Mass University Education — The Big Picture (WGB, CL, AS), pp. 195–203.
ECOOPECOOP-2005-GibbsLC #aspect-oriented #evolution #framework #question
Sustainable System Infrastructure and Big Bang Evolution: Can Aspects Keep Pace? (CG, CRL, YC), pp. 241–261.
FoSSaCSFoSSaCS-1998-Heckmann #integer #linear
The Appearance of Big Integers in Exact Real Arithmetic Based on Linear Fractional Transformations (RH), pp. 172–188.
ICALPICALP-1997-ErdosSSW #sequence
Constructing Big Trees from Short Sequences (PLE, MAS, LAS, TW), pp. 827–837.
ICFPICFP-1997-McAdam #ml
BigTypes in ML (BJM), p. 316.
PODSPODS-1995-Papadimitriou #database #query
Database Metatheory: Asking the Big Queries (CHP), pp. 1–10.
VLDBVLDB-1995-BrownS #named
BigSur: A System For the Management of Earth Science Data (PB, MS), pp. 720–728.
SIGIRSIGIR-1995-Riloff #classification #difference #word
Little Words Can Make a Big Difference for Text Classification (ER), pp. 130–136.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.