Proceedings of the 28th ACM International Conference on Information and Knowledge Management
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, Jeffrey Xu Yu
Proceedings of the 28th ACM International Conference on Information and Knowledge Management
CIKM, 2019.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{CIKM-2019,
	acmid         = "3357384",
	editor        = "Wenwu Zhu and Dacheng Tao and Xueqi Cheng and Peng Cui and Elke A. Rundensteiner and David Carmel and Qi He and Jeffrey Xu Yu",
	isbn          = "978-1-4503-6976-3",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 28th ACM International Conference on Information and Knowledge Management}",
	year          = 2019,
}

Contents (394 items)

CIKM-2019-Shi #towards
Autonomous Driving Towards Mass Production (JS), p. 1.
CIKM-2019-Maybank #metric
The Fisher-Rao Metric in Computer Vision (SJM), p. 3.
CIKM-2019-Han #automation #multi #text-to-text
From Unstructured Text to TextCube: Automated Construction and Multidimensional Exploration (JH), pp. 5–6.
CIKM-2019-Pei
Practicing the Art of Data Science (JP), p. 7.
CIKM-2019-KoLLLY #on the #query
On VR Spatial Query for Dual Entangled Worlds (SHK, YCL, HCL, WCL, DNY), pp. 9–18.
CIKM-2019-DuongRN #multi #sketching #streaming #using
Sketching Streaming Histogram Elements using Multiple Weighted Factors (QHD, HR, KN), pp. 19–28.
CIKM-2019-BrisaboaCBN #string
Improved Compressed String Dictionaries (NRB, ACP, GdB, GN), pp. 29–38.
CIKM-2019-0003RMMD #on the
On Transforming Relevance Scales (LH0, KR, EM, SM, GD), pp. 39–48.
CIKM-2019-YangSC #clustering
Streamline Density Peak Clustering for Practical Adoptions (SY, XS, MC), pp. 49–58.
CIKM-2019-ZhangSTZLAZW0Y #on-demand #platform #recommendation
Recommendation-based Team Formation for On-demand Taxi-calling Platforms (LZ, TS, YT, ZZ, DL, WA, LZ, GW, YL0, JY), pp. 59–68.
CIKM-2019-FuL #estimation #named #network
DeepIST: Deep Image-based Spatio-Temporal Network for Travel Time Estimation (TYF, WCL), pp. 69–78.
CIKM-2019-SuCCZ0 #personalisation
Personalized Route Description Based On Historical Trajectories (HS, GC, WC, BZ, KZ0), pp. 79–88.
CIKM-2019-IzbickiPT #twitter
Geolocating Tweets in any Language at any Location (MI, VP, VJT), pp. 89–98.
CIKM-2019-SiddiqueeAM #detection #named
SeiSMo: Semi-supervised Time Series Motif Discovery for Seismic Signal Detection (MAS, ZA, AM), pp. 99–108.
CIKM-2019-TanMYYDWTYWCCY #named #network #predict #risk management
UA-CRNN: Uncertainty-Aware Convolutional Recurrent Neural Network for Mortality Risk Prediction (QT, AJM, MY, BY, HD, VWSW, YKT, TCFY, GLHW, JYLC, FKLC, PCY), pp. 109–118.
CIKM-2019-HanMNKURNS #detection #image #learning #using
Learning More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection Using Highly-Rough Annotation on MR Images (CH, KM, TN, YK, FU, LR, HN, SS), pp. 119–127.
CIKM-2019-LiQWZCZn #classification #visual notation
Domain Knowledge Guided Deep Atrial Fibrillation Classification and Its Visual Interpretation (XL, BQ, JW, XZ, SC, QZ), pp. 129–138.
CIKM-2019-QiuW0 #multi #predict #problem
Question Difficulty Prediction for Multiple Choice Problems in Medical Exams (ZQ, XW, WF0), pp. 139–148.
CIKM-2019-ZhaoSSW #graph #learning #named #precise #retrieval
GRAPHENE: A Precise Biomedical Literature Retrieval Engine with Graph Augmented Deep Learning and External Knowledge Empowerment (SZ, CS, AS, FW), pp. 149–158.
CIKM-2019-WangZWYZL #multi #recognition
Video-level Multi-model Fusion for Action Recognition (XW, JZ, LW, PSY, JZ, HL), pp. 159–168.
CIKM-2019-BoiarovT #learning #metric #recognition #scalability
Large Scale Landmark Recognition via Deep Metric Learning (AB, ET), pp. 169–178.
CIKM-2019-GuoAWPC00 #classification #multi #recognition
Multi-stage Deep Classifier Cascades for Open World Recognition (XG, AAF, LW, HP, XC0, KZ0, LZ0), pp. 179–188.
CIKM-2019-ShahVLFLTJS #classification #image #multimodal
Inferring Context from Pixels for Multimodal Image Classification (MS, KV, CTL, AF, ZL, AT, CJ, CS), pp. 189–198.
CIKM-2019-WangSGYZF #multi #semantics
Multi-Target Multi-Camera Tracking with Human Body Part Semantic Features (MW, DS, NG, WY, TZ, ZF), pp. 199–208.
CIKM-2019-0002LG #data type #performance #semistructured data
Efficient Join Processing Over Incomplete Data Streams (WR0, XL, KG), pp. 209–218.
CIKM-2019-DurschSWFFSBHJP #algorithm #dependence #evaluation
Inclusion Dependency Discovery: An Experimental Evaluation of Thirteen Algorithms (FD, AS, FW, MF, TF, NS, TB, HH, LJ, TP, FN), pp. 219–228.
CIKM-2019-WangKGS #database #web
Constructing a Comprehensive Events Database from the Web (QW, BK, VG, DS), pp. 229–238.
CIKM-2019-ChengHLWLC #memory management
Deploying Hash Tables on Die-Stacked High Bandwidth Memory (XC, BH, EL, WW, SL, XC), pp. 239–248.
CIKM-2019-LiWWLYLW #learning #multi #platform
Partially Shared Adversarial Learning For Semi-supervised Multi-platform User Identity Linkage (CL, SW, HW, YL, PSY, ZL, WW), pp. 249–258.
CIKM-2019-CaoZXPY #adaptation #classification #consistency #image #semantics
Adversarial Domain Adaptation with Semantic Consistency for Cross-Domain Image Classification (MC, XZ, YX, YP, BY), pp. 259–268.
CIKM-2019-PratamaCXL0 #atl #information management #named #process #streaming
ATL: Autonomous Knowledge Transfer from Many Streaming Processes (MP, MdC, RX, EL, JL0), pp. 269–278.
CIKM-2019-WeiK #information management #multi
Knowledge Transfer based on Multiple Manifolds Assumption (PW, YK), pp. 279–287.
CIKM-2019-JiangWZSLL #detection #graph #learning #representation
Cross-domain Aspect Category Transfer and Detection via Traceable Heterogeneous Graph Representation Learning (ZJ, JW, LZ, CS, YL, XL), pp. 289–298.
CIKM-2019-QiLDCQD #e-commerce #framework
A Deep Neural Framework for Sales Forecasting in E-Commerce (YQ, CL, HD, MC, YQ, YD), pp. 299–308.
CIKM-2019-YangTDZLL #framework #query #semantics
An Active and Deep Semantic Matching Framework for Query Rewrite in E-Commercial Search Engine (YY, JT, HD, ZZ, YL, XL), pp. 309–318.
CIKM-2019-ZhaoZXQJ0 #named #predict
AIBox: CTR Prediction Model Training on a Single Node (WZ, JZ, DX, YQ, RJ, PL0), pp. 319–328.
CIKM-2019-YuanHYZCDL #predict
Improving Ad Click Prediction by Considering Non-displayed Events (BWY, JYH, MYY, HZ, CYC, ZD, CJL), pp. 329–338.
CIKM-2019-Lakhotia0 #algorithm #approximate #coordination #network #social
Approximation Algorithms for Coordinating Ad Campaigns on Social Networks (KL, DK0), pp. 339–348.
CIKM-2019-WangZDSZHYB #predict
Regularized Adversarial Sampling and Deep Time-aware Attention for Click-Through Rate Prediction (YW, LZ, QD, FS, BZ, YH, WY, YB), pp. 349–358.
CIKM-2019-BiAZC #feedback
Conversational Product Search Based on Negative Feedback (KB, QA, YZ, WBC), pp. 359–368.
CIKM-2019-ZouK #learning
Learning to Ask: Question-based Sequential Bayesian Product Search (JZ, EK), pp. 369–378.
CIKM-2019-AiHVC #personalisation
A Zero Attention Model for Personalized Product Search (QA, DNH, SVNV, WBC), pp. 379–388.
CIKM-2019-EladGNKR #learning #personalisation
Learning to Generate Personalized Product Descriptions (GE, IG, SN, BK, KR), pp. 389–398.
CIKM-2019-ChenSTCS #network #performance #random
Fast and Accurate Network Embeddings via Very Sparse Random Projection (HC, SFS, YT, MC, SS), pp. 399–408.
CIKM-2019-LongWDSJL #approach #community #network
Hierarchical Community Structure Preserving Network Embedding: A Subspace Approach (QL, YW, LD, GS, YJ, WL), pp. 409–418.
CIKM-2019-JiaoXZZ #graph #network #predict
Collective Link Prediction Oriented Network Embedding with Hierarchical Graph Attention (YJ, YX, JZ, YZ), pp. 419–428.
CIKM-2019-Wang0T00 #network
Discerning Edge Influence for Network Embedding (YW, YY0, HT, FX0, JL0), pp. 429–438.
CIKM-2019-LuoLM #community #profiling
Constrained Co-embedding Model for User Profiling in Question Answering Communities (YL, SL, ZM), pp. 439–448.
CIKM-2019-00090S #learning #representation
Hyper-Path-Based Representation Learning for Hyper-Networks (JH0, XL0, YS), pp. 449–458.
CIKM-2019-LiZWHYL #multi #network
Multi-Hot Compact Network Embedding (CL, LZ, SW, FH, PSY, ZL), pp. 459–468.
CIKM-2019-LuWSYY #network
Temporal Network Embedding with Micro- and Macro-dynamics (YL, XW0, CS, PSY, YY), pp. 469–478.
CIKM-2019-DuT #multi #named
MrMine: Multi-resolution Multi-network Embedding (BD, HT), pp. 479–488.
CIKM-2019-ParkKZ0Y #network
Task-Guided Pair Embedding in Heterogeneous Network (CP, DK, QZ, JH0, HY), pp. 489–498.
CIKM-2019-LeeRKKKR #graph #network
Graph Convolutional Networks with Motif-based Attention (JBL, RAR, XK, SK, EK, AR), pp. 499–508.
CIKM-2019-LiGLCYN #graph #hashtag #network #recommendation
Long-tail Hashtag Recommendation for Micro-videos with Graph Convolutional Network (ML, TG, ML, ZC, JY, LN), pp. 509–518.
CIKM-2019-ZhaoCXLZ0 #classification #graph
Hashing Graph Convolution for Node Classification (WZ, ZC, CX, CL, TZ0, JY0), pp. 519–528.
CIKM-2019-XuLHLX0 #e-commerce #graph #network #recommendation #social
Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation (FX, JL, ZH, YL0, YX, XX0), pp. 529–538.
CIKM-2019-LiCWZW #feature model #graph #interactive #modelling #named #network #predict
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction (ZL, ZC, SW, XZ, LW0), pp. 539–548.
CIKM-2019-ZhangFYZS #framework #identification #network
Key Player Identification in Underground Forums over Attributed Heterogeneous Information Network Embedding Framework (YZ, YF, YY, LZ, CS), pp. 549–558.
CIKM-2019-FanZDCSL #approach #graph #identification #learning #network #novel
Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach (CF, LZ, YD, MC, YS, ZL), pp. 559–568.
CIKM-2019-DongZHSL #detection #graph #multi #network
Multiple Rumor Source Detection with Graph Convolutional Networks (MD, BZ, NQVH, HS, GL), pp. 569–578.
CIKM-2019-QiuLHY #graph #network #order #recommendation
Rethinking the Item Order in Session-based Recommendation with Graph Neural Networks (RQ, JL, ZH, HY), pp. 579–588.
CIKM-2019-SalhaLHTV #graph #predict
Gravity-Inspired Graph Autoencoders for Directed Link Prediction (GS, SL, RH, VAT, MV), pp. 589–598.
CIKM-2019-ShiSLZHLZW00 #network
Discovering Hypernymy in Text-Rich Heterogeneous Information Network by Exploiting Context Granularity (YS, JS, YL, NZ, XH, ZL, QZ, MW, MK0, JH0), pp. 599–608.
CIKM-2019-HouFZYLWWXS #android #detection #graph #named #robust
αCyber: Enhancing Robustness of Android Malware Detection System against Adversarial Attacks on Heterogeneous Graph based Model (SH, YF, YZ, YY, JL, WW, JW, QX, FS), pp. 609–618.
CIKM-2019-LeePY #named #network
BHIN2vec: Balancing the Type of Relation in Heterogeneous Information Network (SL, CP, HY), pp. 619–628.
CIKM-2019-NieHHSCZWK
Deep Sequence-to-Sequence Entity Matching for Heterogeneous Entity Resolution (HN, XH, BH, LS, BC, WZ, SW, HK), pp. 629–638.
CIKM-2019-HeSLJPP #named #network #random
HeteSpaceyWalk: A Heterogeneous Spacey Random Walk for Heterogeneous Information Network Embedding (YH, YS, JL, CJ, JP, HP), pp. 639–648.
CIKM-2019-XieXYZ #graph #multi
EHR Coding with Multi-scale Feature Attention and Structured Knowledge Graph Propagation (XX, YX, PSY, YZ), pp. 649–658.
CIKM-2019-QuHOZL #fine-grained
A Fine-grained and Noise-aware Method for Neural Relation Extraction (JQ, WH, DO, XZ0, XL), pp. 659–668.
CIKM-2019-JinOLLLC #graph #learning #semantics #similarity
Learning Region Similarity over Spatial Knowledge Graphs with Hierarchical Types and Semantic Relations (XJ, BO, SL, DL, KHL, LC), pp. 669–678.
CIKM-2019-YeWYJZXY #behaviour #graph #network #representation
Bayes EMbedding (BEM): Refining Representation by Integrating Knowledge Graphs and Behavior-specific Networks (YY, XW, JY, KJ, JZ, YX, HY), pp. 679–688.
CIKM-2019-HuynhP #algorithm #benchmark #knowledge base #metric
A Benchmark for Fact Checking Algorithms Built on Knowledge Bases (VPH, PP), pp. 689–698.
CIKM-2019-BhutaniJ #knowledge base #online #query
Online Schemaless Querying of Heterogeneous Open Knowledge Bases (NB, HVJ), pp. 699–708.
CIKM-2019-ZhengZ #modelling
Enhancing Conversational Dialogue Models with Grounded Knowledge (WZ, KZ), pp. 709–718.
CIKM-2019-DengLSDFYL #approach #multi #named
MedTruth: A Semi-supervised Approach to Discovering Knowledge Condition Information from Multi-Source Medical Data (YD, YL, YS, ND, WF, MY0, KL), pp. 719–728.
CIKM-2019-ChristmannRASW #graph #using
Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion (PC, RSR, AA, JS, GW), pp. 729–738.
CIKM-2019-BhutaniZJ #composition #knowledge base #learning #query
Learning to Answer Complex Questions over Knowledge Bases with Query Composition (NB, XZ, HVJ), pp. 739–748.
CIKM-2019-0006B #relational
Auto-completion for Data Cells in Relational Tables (SZ0, KB), pp. 761–770.
CIKM-2019-ZhengSKY #clique #identification #set
Author Set Identification via Quasi-Clique Discovery (YZ, CS, XK, YY), pp. 771–780.
CIKM-2019-IosifidisN #adaptation #cumulative #named
AdaFair: Cumulative Fairness Adaptive Boosting (VI, EN), pp. 781–790.
CIKM-2019-XuZL #incremental #kernel #online #predict
New Online Kernel Ridge Regression via Incremental Predictive Sampling (SX, XZ, SL), pp. 791–800.
CIKM-2019-LiaoZ #kernel #online #sketching
Online Kernel Selection via Tensor Sketching (SL, XZ), pp. 801–810.
CIKM-2019-TrittenbachB #detection #learning #multi
One-Class Active Learning for Outlier Detection with Multiple Subspaces (HT, KB), pp. 811–820.
CIKM-2019-Cohen-ShapiraRS #dataset #named #recommendation #representation #visual notation
AutoGRD: Model Recommendation Through Graphical Dataset Representation (NCS, LR, BS, GK, RV), pp. 821–830.
CIKM-2019-TanYHD #learning #multi #segmentation #semantics
Batch Mode Active Learning for Semantic Segmentation Based on Multi-Clue Sample Selection (YT, LY, QH, ZD), pp. 831–840.
CIKM-2019-RekatsinasDP #adaptation #crowdsourcing #named #performance #query
CRUX: Adaptive Querying for Efficient Crowdsourced Data Extraction (TR, AD, AGP), pp. 841–850.
CIKM-2019-ZhangKXL #fine-grained
Deep Forest with LRRS Feature for Fine-grained Website Fingerprinting with Encrypted SSL/TLS (ZZ, CK, GX, ZL0), pp. 851–860.
CIKM-2019-KangT #mining #named #network
N2N: Network Derivative Mining (JK, HT), pp. 861–870.
CIKM-2019-LiuNX0Y #framework #named #self
MoBoost: A Self-improvement Framework for Linear-based Hashing (XL, XN, XX, LZ0, YY), pp. 871–880.
CIKM-2019-LiuWSL #learning
Loopless Semi-Stochastic Gradient Descent with Less Hard Thresholding for Sparse Learning (XL, BW, FS, HL), pp. 881–890.
CIKM-2019-AliARR #identification #named
EPA: Exoneration and Prominence based Age for Infection Source Identification (SSA, TA, AR, SAMR), pp. 891–900.
CIKM-2019-LiuD0SGWZRXCM #generative #persuasion #visual notation
Generating Persuasive Visual Storylines for Promotional Videos (CL0, YD, HY0, ZS, ZG, PW, CZ, PR, XX, LC, CM), pp. 901–910.
CIKM-2019-MarinR #clustering #programming #semantics
Clustering Recurrent and Semantically Cohesive Program Statements in Introductory Programming Assignments (VJM, CRR), pp. 911–920.
CIKM-2019-0004RG #microblog #summary
Going Beyond Content Richness: Verified Information Aware Summarization of Crisis-Related Microblogs (AS0, KR, NG), pp. 921–930.
CIKM-2019-AmsterdamerMSY #constraints #declarative
Declarative User Selection with Soft Constraints (YA, TM, AS, BY), pp. 931–940.
CIKM-2019-SinhaMSMS0 #approach #identification #multi #twitter
#suicidal - A Multipronged Approach to Identify and Explore Suicidal Ideation in Twitter (PPS, RM, RS, DM, RRS, HL0), pp. 941–950.
CIKM-2019-JinCCHV #interactive #music #named #recommendation
MusicBot: Evaluating Critiquing-Based Music Recommenders with Conversational Interaction (YJ, WC, LC, NNH, KV), pp. 951–960.
CIKM-2019-BonchiGGOR #community #network
Discovering Polarized Communities in Signed Networks (FB, EG, AG, BO, GR), pp. 961–970.
CIKM-2019-XiaoGJLCZY #modelling
Model-based Constrained MDP for Budget Allocation in Sequential Incentive Marketing (SX, LG, ZJ, LL, YC, JZ, SY), pp. 971–980.
CIKM-2019-KaghazgaranAC #empirical #overview
Wide-Ranging Review Manipulation Attacks: Model, Empirical Study, and Countermeasures (PK, MA, JC), pp. 981–990.
CIKM-2019-RizosHS #classification #learning
Augment to Prevent: Short-Text Data Augmentation in Deep Learning for Hate-Speech Classification (GR, KH, BWS), pp. 991–1000.
CIKM-2019-CaoCL0 #network
Nested Relation Extraction with Iterative Neural Network (YC, DC0, HL0, PL0), pp. 1001–1010.
CIKM-2019-ZhangLZZLWCZ #learning #word
Learning Chinese Word Embeddings from Stroke, Structure and Pinyin of Characters (YZ, YL, JZ, ZZ, XL, WW, ZC, SZ), pp. 1011–1020.
CIKM-2019-ChenLX0 #classification #network #sentiment
Sentiment Commonsense Induced Sequential Neural Networks for Sentiment Classification (SC, XL, YX, LH0), pp. 1021–1030.
CIKM-2019-YinLW #analysis #interactive #multi #sentiment
Interactive Multi-Grained Joint Model for Targeted Sentiment Analysis (DY, XL, XW0), pp. 1031–1040.
CIKM-2019-WangA0 #documentation #word
Beyond word2vec: Distance-graph Tensor Factorization for Word and Document Embeddings (SW, CCA, HL0), pp. 1041–1050.
CIKM-2019-HuangCLCHLZZW #approach #classification #multi #network
Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach (WH, EC, QL0, YC, ZH, YL, ZZ, DZ, SW), pp. 1051–1060.
CIKM-2019-IslamLL00 #classification #random #semantics
A Semantics Aware Random Forest for Text Classification (MZI, JL, JL, LL0, WK0), pp. 1061–1070.
CIKM-2019-JiangSTWZXY #modelling #topic
Federated Topic Modeling (DJ, YS, YT, XW0, WZ, QX, QY), pp. 1071–1080.
CIKM-2019-WangWC #multi #network
Multi-Turn Response Selection in Retrieval-Based Chatbots with Iterated Attentive Convolution Matching Network (HW, ZW, JC), pp. 1081–1090.
CIKM-2019-WuWLH0 #classification #sentiment
Sentiment Lexicon Enhanced Neural Sentiment Classification (CW, FW, JL, YH, XX0), pp. 1091–1100.
CIKM-2019-LuoZWZ #framework #learning #named #representation
ResumeGAN: An Optimized Deep Representation Learning Framework for Talent-Job Fit via Adversarial Learning (YL, HZ, YW, XZ), pp. 1101–1110.
CIKM-2019-YaoHGH #low level #network
Regularizing Deep Neural Networks by Ensemble-based Low-Level Sample-Variances Method (SY, YH, LG, ZH), pp. 1111–1120.
CIKM-2019-ChenSHG #detection #network
Attention-Residual Network with CNN for Rumor Detection (YC, JS, LH, WG), pp. 1121–1130.
CIKM-2019-YanLWLWZG #classification #image #multi #random #using
Imbalance Rectification in Deep Logistic Regression for Multi-Label Image Classification Using Random Noise Samples (WY, RL, JW, YL, JW, PZ, XG), pp. 1131–1140.
CIKM-2019-WangWLL #named #network
CamDrop: A New Explanation of Dropout and A Guided Regularization Method for Deep Neural Networks (HW, GW, GL, LL), pp. 1141–1149.
CIKM-2019-XiaoLM #collaboration #learning
Dynamic Collaborative Recurrent Learning (TX, SL, ZM), pp. 1151–1160.
CIKM-2019-SongS0DX0T #automation #feature model #interactive #learning #named #network #self
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks (WS, CS, ZX0, ZD, YX, MZ0, JT), pp. 1161–1170.
CIKM-2019-PratamaZAO0 #automation #multi #network #streaming
Automatic Construction of Multi-layer Perceptron Network from Streaming Examples (MP, CZ, AA, YSO, WD0), pp. 1171–1180.
CIKM-2019-ZhangTXZ #clustering #embedded #robust
Robust Embedded Deep K-means Clustering (RZ0, HT, YX, YZ), pp. 1181–1190.
CIKM-2019-AdriaensABGL #graph
Discovering Interesting Cycles in Directed Graphs (FA, ÇA, TDB, AG, JL), pp. 1191–1200.
CIKM-2019-Sanei-MehriZST #estimation #graph #named
FLEET: Butterfly Estimation from a Bipartite Graph Stream (SVSM, YZ, AES, ST), pp. 1201–1210.
CIKM-2019-Zhang00QZL #clique
Selecting the Optimal Groups: Efficiently Computing Skyline k-Cliques (CZ0, WZ0, YZ0, LQ, FZ0, XL0), pp. 1211–1220.
CIKM-2019-DerrJCT #network
Balance in Signed Bipartite Networks (TD, CJ, YC, JT), pp. 1221–1230.
CIKM-2019-ChehreghaniBA #adaptation #algorithm
Adaptive Algorithms for Estimating Betweenness and k-path Centralities (MHC, AB, TA), pp. 1231–1240.
CIKM-2019-YangJGZL #detection #interactive #online
Interactive Variance Attention based Online Spoiler Detection for Time-Sync Comments (WY, WJ, WG, XZ, YL), pp. 1241–1250.
CIKM-2019-GongZ00XWH #community #detection #developer #learning #online #using
Detecting Malicious Accounts in Online Developer Communities Using Deep Learning (QG, JZ, YC0, QL0, YX, XW, PH), pp. 1251–1260.
CIKM-2019-HuangLZYCGH #education #multi #online #recommendation
Exploring Multi-Objective Exercise Recommendations in Online Education Systems (ZH, QL0, CZ, YY, EC, WG, GH), pp. 1261–1270.
CIKM-2019-Dutta0KMM0 #modelling #online
Into the Battlefield: Quantifying and Modeling Intra-community Conflicts in Online Discussion (SD, DD0, GK, SM, AM, TC0), pp. 1271–1280.
CIKM-2019-ChoiAA #online #predict
Offline and Online Satisfaction Prediction in Open-Domain Conversational Systems (JIC, AA, EA), pp. 1281–1290.
CIKM-2019-MaZLH0J #collaboration #data analysis #health #privacy
Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis (JM, QZ, JL, JCH, LX0, XJ), pp. 1291–1300.
CIKM-2019-TangFXLH #privacy
Achieve Privacy-Preserving Truth Discovery in Crowdsensing Systems (JT, SF, MX, YL, KH), pp. 1301–1310.
CIKM-2019-WangZYLYRS #privacy
Privacy-preserving Crowd-guided AI Decision-making in Ethical Dilemmas (TW, JZ, HY, JL, XY, XR, SS), pp. 1311–1320.
CIKM-2019-BiswasGRB #approximate #clustering #privacy
Privacy Preserving Approximate K-means Clustering (CB, DG, DR, UB), pp. 1321–1330.
CIKM-2019-Zhang0LFW #privacy
Practical Access Pattern Privacy by Combining PIR and Oblivious Shuffle (ZZ, KW0, WL, AWCF, RCWW), pp. 1331–1340.
CIKM-2019-0005HQQGCLSL #hybrid
A Hybrid Retrieval-Generation Neural Conversation Model (LY0, JH, MQ, CQ, JG, WBC, XL, YS, JL), pp. 1341–1350.
CIKM-2019-ZhengWWW
A Latent-Constrained Variational Neural Dialogue Model for Information-Rich Responses (YZ, YW, LW, JW), pp. 1351–1360.
CIKM-2019-DuanZYZLWWZS0 #learning #mining #multi #summary
Legal Summarization for Multi-role Debate Dialogue via Controversy Focus Mining and Multi-task Learning (XD, YZ, LY, XZ, XL, TW, RW, QZ, CS, FW0), pp. 1361–1370.
CIKM-2019-AhmadvandSCA #classification #named #topic
ConCET: Entity-Aware Topic Classification for Open-Domain Conversational Agents (AA, HS, JIC, EA), pp. 1371–1380.
CIKM-2019-Zhang0H #feedback #interactive
An Interactive Mechanism to Improve Question Answering Systems via Feedback (XZ, LZ0, SH), pp. 1381–1390.
CIKM-2019-QuYQZCCI
Attentive History Selection for Conversational Question Answering (CQ, LY0, MQ, YZ, CC, WBC, MI), pp. 1391–1400.
CIKM-2019-0002LMGZZH #automation #chat #generative #interactive
Emotion-aware Chat Machine: Automatic Emotional Response Generation for Human-like Emotional Interaction (WW0, JL, XM, GG, FZ0, PZ, YH), pp. 1401–1410.
CIKM-2019-RomeroRPPSW #query
Commonsense Properties from Query Logs and Question Answering Forums (JR, SR, KP, JZP, AS, GW), pp. 1411–1420.
CIKM-2019-SrivastavaLF #adaptation #community #modelling #multimodal #platform #visual notation
Adapting Visual Question Answering Models for Enhancing Multimodal Community Q&A Platforms (AS, HWL, SF), pp. 1421–1430.
CIKM-2019-VakulenkoGPRC #graph #message passing
Message Passing for Complex Question Answering over Knowledge Graphs (SV, JDFG, AP, MdR, MC), pp. 1431–1440.
CIKM-2019-SunLWPLOJ #bidirectional #named #recommendation
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer (FS, JL, JW, CP, XL, WO, PJ), pp. 1441–1450.
CIKM-2019-ShiZYZHLM #adaptation #recommendation
Adaptive Feature Sampling for Recommendation with Missing Content Feature Values (SS, MZ0, XY, YZ, BH, YL, SM), pp. 1451–1460.
CIKM-2019-ChenCCR #network #recommendation
A Dynamic Co-attention Network for Session-based Recommendation (WC, FC, HC, MdR), pp. 1461–1470.
CIKM-2019-YouVLL #multi #network #recommendation
Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation (DY, NV, KL, QL), pp. 1471–1480.
CIKM-2019-HeWNC #recommendation #self
A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists (YH, JW, WN, JC), pp. 1481–1490.
CIKM-2019-LiJC0W #approach #hybrid #named #recommendation
HAES: A New Hybrid Approach for Movie Recommendation with Elastic Serendipity (XL, WJ, WC, JW0, GW0), pp. 1503–1512.
CIKM-2019-MaWZLLCYT0 #named #recommendation
DBRec: Dual-Bridging Recommendation via Discovering Latent Groups (JM, JW, MZ, LL, CL, WC, YY, HT, XL0), pp. 1513–1522.
CIKM-2019-KangM #generative #recommendation #scalability
Candidate Generation with Binary Codes for Large-Scale Top-N Recommendation (WCK, JJM), pp. 1523–1532.
CIKM-2019-ZhuC0LZ #framework #named #recommendation
DTCDR: A Framework for Dual-Target Cross-Domain Recommendation (FZ, CC, YW0, GL, XZ), pp. 1533–1542.
CIKM-2019-KangPKCC #modelling #recommendation #topic #using
Recommender System Using Sequential and Global Preference via Attention Mechanism and Topic Modeling (KK, JP, WK, HC, JC), pp. 1543–1552.
CIKM-2019-XueJLWZT #on-demand #recommendation
A Spatio-temporal Recommender System for On-demand Cinemas (TX, BJ, BL, WW0, QZ, ST), pp. 1553–1562.
CIKM-2019-KangHLY #learning #recommendation
Semi-Supervised Learning for Cross-Domain Recommendation to Cold-Start Users (SK, JH, DL, HY), pp. 1563–1572.
CIKM-2019-XiaWDZCC #recommendation
Leveraging Ratings and Reviews with Gating Mechanism for Recommendation (HX, ZW, BD, LZ, SC, GC), pp. 1573–1582.
CIKM-2019-ZhangC #recommendation #visual notation
Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommendation with Implicit Visual Influence (YZ, JC), pp. 1583–1592.
CIKM-2019-SunQYCCC #question #what
What Can History Tell Us? (KS, TQ, HY, TC, YC, LC0), pp. 1593–1602.
CIKM-2019-ZhangMLZ0MXT #learning #ranking
Context-Aware Ranking by Constructing a Virtual Environment for Reinforcement Learning (JZ, JM, YL, RZ, MZ0, SM, JX0, QT), pp. 1603–1612.
CIKM-2019-ShiLLP #multi #network
A Multi-Scale Temporal Feature Aggregation Convolutional Neural Network for Portfolio Management (SS, JL, GL, PP), pp. 1613–1622.
CIKM-2019-WangRCR0R #graph #learning #predict
Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning (SW, PR, ZC, ZR, JM0, MdR), pp. 1623–1632.
CIKM-2019-LuYGWLC #clustering #learning #realtime
Reinforcement Learning with Sequential Information Clustering in Real-Time Bidding (JL, CY, XG, LW, CL, GC), pp. 1633–1641.
CIKM-2019-LiuZYCY #generative #learning #refinement
Generative Question Refinement with Deep Reinforcement Learning in Retrieval-based QA System (YL, CZ, XY, YC, PSY), pp. 1643–1652.
CIKM-2019-Pothirattanachaikul #behaviour #documentation
Analyzing the Effects of Document's Opinion and Credibility on Search Behaviors and Belief Dynamics (SP, TY, YY, MY), pp. 1653–1662.
CIKM-2019-SrinivasanRSG #identification
Identifying Facet Mismatches In Search Via Micrographs (SS, NSR, KS, LG), pp. 1663–1672.
CIKM-2019-ZhangH #multi #named #nearest neighbour
GRIP: Multi-Store Capacity-Optimized High-Performance Nearest Neighbor Search for Vector Search Engine (MZ, YH), pp. 1673–1682.
CIKM-2019-XieMLRAHZM #image #information management #web
Improving Web Image Search with Contextual Information (XX, JM, YL, MdR, QA, YH, MZ0, SM), pp. 1683–1692.
CIKM-2019-XiaoRMSL #learning #metric #personalisation
Dynamic Bayesian Metric Learning for Personalized Product Search (TX, JR, ZM, HS, SL), pp. 1693–1702.
CIKM-2019-WangLLW #predict #towards
Towards Accurate and Interpretable Sequential Prediction: A CNN & Attention-Based Feature Extractor (JW, QL0, ZL, SW), pp. 1703–1712.
CIKM-2019-YuanLZW #classification
Locally Slope-based Dynamic Time Warping for Time Series Classification (JY, QL, WZ, ZW), pp. 1713–1722.
CIKM-2019-CaoZSX #modelling #named #network #sequence
HiCAN: Hierarchical Convolutional Attention Network for Sequence Modeling (YC, WZ, BS, CX), pp. 1723–1732.
CIKM-2019-KawabataMS #automation #data type #mining
Automatic Sequential Pattern Mining in Data Streams (KK, YM, YS), pp. 1733–1742.
CIKM-2019-Wang0CRR #algorithm #higher-order #parallel #performance
Efficient Sequential and Parallel Algorithms for Estimating Higher Order Spectra (ZW, AAM0, XC, NR, SR), pp. 1743–1752.
CIKM-2019-KrishnanCTS #approach #composition #recommendation #social
A Modular Adversarial Approach to Social Recommendation (AK, HC, TC0, HS), pp. 1753–1762.
CIKM-2019-WangJLHMD #community #mining #network #sentiment #social
Emotional Contagion-Based Social Sentiment Mining in Social Networks by Introducing Network Communities (XW, DJ, ML, DH, KM, JD), pp. 1763–1772.
CIKM-2019-LaiSYHLY #multi #recommendation
Social-Aware VR Configuration Recommendation via Multi-Feedback Coupled Tensor Factorization (HCL, HHS, DNY, JLH, WCL, PSY), pp. 1773–1782.
CIKM-2019-0001WJPC #fault
Tracking Top-k Influential Users with Relative Errors (YY0, ZW, TJ, JP, EC), pp. 1783–1792.
CIKM-2019-IslamMR #graph #named #network #predict #social #using
NActSeer: Predicting User Actions in Social Network using Graph Augmented Neural Network (MRI, SM, NR), pp. 1793–1802.
CIKM-2019-LiuWJYZZ #named #recommendation
In2Rec: Influence-based Interpretable Recommendation (HL, JW, LJ, JY, XZ0, MZ), pp. 1803–1812.
CIKM-2019-ChuCW #documentation
Accounting for Temporal Dynamics in Document Streams (ZC, RC, HW), pp. 1813–1822.
CIKM-2019-AkenWLG #analysis #how
How Does BERT Answer Questions?: A Layer-Wise Analysis of Transformer Representations (BvA, BW, AL, FAG), pp. 1823–1832.
CIKM-2019-AbualsaudS #query
Patterns of Search Result Examination: Query to First Action (MA, MDS), pp. 1833–1842.
CIKM-2019-ZhaoCY #comprehension #e-commerce #learning #query
A Dynamic Product-aware Learning Model for E-commerce Query Intent Understanding (JZ, HC, DY), pp. 1843–1852.
CIKM-2019-XuHY #graph #learning #network #scalability
Scalable Causal Graph Learning through a Deep Neural Network (CX, HH, SY), pp. 1853–1862.
CIKM-2019-HosseiniH #feature model #kernel #learning #multi #prototype #representation
Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection (BH, BH), pp. 1863–1872.
CIKM-2019-QianW0 #behaviour #comprehension #modelling #named #process
BePT: A Behavior-based Process Translator for Interpreting and Understanding Process Models (CQ, LW, AK0), pp. 1873–1882.
CIKM-2019-LeHSZ00 #effectiveness #towards
Towards Effective and Interpretable Person-Job Fitting (RL, WH, YS, TZ, DZ0, RY0), pp. 1883–1892.
CIKM-2019-ChekolS #graph #performance
Leveraging Graph Neighborhoods for Efficient Inference (MWC, HS), pp. 1893–1902.
CIKM-2019-GaoHWWWPC #named #recommendation
STAR: Spatio-Temporal Taxonomy-Aware Tag Recommendation for Citizen Complaints (JG, YH, YW, XW, JW, GP, XC), pp. 1903–1912.
CIKM-2019-WeiXZZZC0ZXL #learning #named
CoLight: Learning Network-level Cooperation for Traffic Signal Control (HW, NX, HZ, GZ, XZ, CC, WZ0, YZ, KX, ZL), pp. 1913–1922.
CIKM-2019-WuWZJ #effectiveness #learning #performance #recommendation
Learning to Effectively Estimate the Travel Time for Fastest Route Recommendation (NW, JW, WXZ, YJ), pp. 1923–1932.
CIKM-2019-ZhangRZYZ #named #network
PRNet: Outdoor Position Recovery for Heterogenous Telco Data by Deep Neural Network (YZ, WR, KZ, MY, JZ), pp. 1933–1942.
CIKM-2019-Jia0WW #collaboration #energy
Active Collaborative Sensing for Energy Breakdown (YJ, NB0, HW, KW), pp. 1943–1952.
CIKM-2019-DongSLLQZD #performance
Forecasting Pavement Performance with a Feature Fusion LSTM-BPNN Model (YD, YS, XL, SL, LQ, WZ0, JD), pp. 1953–1962.
CIKM-2019-ZhengXZFWZLXL #contest #learning
Learning Phase Competition for Traffic Signal Control (GZ, YX, XZ, JF, HW, HZ, YL0, KX, ZL), pp. 1963–1972.
CIKM-2019-LinWXLB #estimation #hybrid #network #using
Path Travel Time Estimation using Attribute-related Hybrid Trajectories Network (XL, YW, XX, ZL, SSB), pp. 1973–1982.
CIKM-2019-JinZ0LGQJTWWWY #multi #named #order #platform
CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms (JJ, MZ, WZ0, ML, ZG, ZQ, YJ, XT, CW, JW0, GW, JY), pp. 1983–1992.
CIKM-2019-JenkinsFWL #learning #multimodal #representation
Unsupervised Representation Learning of Spatial Data via Multimodal Embedding (PJ, AF, SW, ZL), pp. 1993–2002.
CIKM-2019-QiuSR #crowdsourcing #platform #rating
Rating Mechanisms for Sustainability of Crowdsourcing Platforms (CQ, ACS, SMR), pp. 2003–2012.
CIKM-2019-YangLSB #behaviour #interactive #predict
Exploring The Interaction Effects for Temporal Spatial Behavior Prediction (HY, TL, YS, EB), pp. 2013–2022.
CIKM-2019-JonesWN #comprehension #social #web
Social Cards Probably Provide For Better Understanding Of Web Archive Collections (SMJ, MCW, MLN), pp. 2023–2032.
CIKM-2019-ShresthaMAV #behaviour #graph #interactive #learning #social
Learning from Dynamic User Interaction Graphs to Forecast Diverse Social Behavior (PS, SM, DA, SV), pp. 2033–2042.
CIKM-2019-0009XWSWZG #behaviour #comprehension #online
Understanding Default Behavior in Online Lending (YY0, YX, CW, YS, FW, YZ, MG), pp. 2043–2052.
CIKM-2019-ZhangL #using
Interpretable MTL from Heterogeneous Domains using Boosted Tree (YLZ, LL), pp. 2053–2056.
CIKM-2019-LiuQLZX #comprehension #order
Machine Reading Comprehension: Matching and Orders (AL, LQ, JL, CZ, ZX), pp. 2057–2060.
CIKM-2019-TianY0 #overview #summary
Aspect and Opinion Aware Abstractive Review Summarization with Reinforced Hard Typed Decoder (YT, JY, JJ0), pp. 2061–2064.
CIKM-2019-HuUMH #datalog #knowledge base #rdf #reasoning
Datalog Reasoning over Compressed RDF Knowledge Bases (PH, JU, BM, IH), pp. 2065–2068.
CIKM-2019-LinPLO #network #recognition #using
An Explainable Deep Fusion Network for Affect Recognition Using Physiological Signals (JL, SP, CSL, SLO), pp. 2069–2072.
CIKM-2019-ZouLAWZ #learning #multi #named #rank
MarlRank: Multi-agent Reinforced Learning to Rank (SZ, ZL, MA, JW0, PZ), pp. 2073–2076.
CIKM-2019-GuHDM #analysis #learning #named
LinkRadar: Assisting the Analysis of Inter-app Page Links via Transfer Learning (DG, ZH, SD, YM0), pp. 2077–2080.
CIKM-2019-PangWZG0 #design #generative #named #network
NAD: Neural Network Aided Design for Textile Pattern Generation (ZP, SW, DZ, YG, GC0), pp. 2081–2084.
CIKM-2019-NiYWLNQC #algorithm #facebook #feature model #ranking
Feature Selection for Facebook Feed Ranking System via a Group-Sparsity-Regularized Training Algorithm (XN, YY, PW, YL, SN, QQ, CC), pp. 2085–2088.
CIKM-2019-GaoLY #fine-grained #probability
Fine-Grained Geolocalization of User-Generated Short Text based on Weight Probability Model (CG, YL, JY), pp. 2089–2092.
CIKM-2019-0002DKBJ #clustering
A Compare-Aggregate Model with Latent Clustering for Answer Selection (SY0, FD, DSK, TB, KJ), pp. 2093–2096.
CIKM-2019-WangL #behaviour #learning #network
Spotting Terrorists by Learning Behavior-aware Heterogeneous Network Embedding (PCW, CTL), pp. 2097–2100.
CIKM-2019-WuH #network #scalability
Scalable Manifold-Regularized Attributed Network Embedding via Maximum Mean Discrepancy (JW, JH), pp. 2101–2104.
CIKM-2019-HamdiBA
Tensor Decomposition-based Node Embedding (SMH, SFB, RAA), pp. 2105–2108.
CIKM-2019-ArabzadehZJB #estimation #geometry
Geometric Estimation of Specificity within Embedding Spaces (NA, FZ, JJ, EB), pp. 2109–2112.
CIKM-2019-HuangSZWC #learning #network #self
Similarity-Aware Network Embedding with Self-Paced Learning (CH0, BS, XZ, XW, NVC), pp. 2113–2116.
CIKM-2019-XuePLS #multi
Integrating Multi-Network Topology via Deep Semi-supervised Node Embedding (HX, JP, JL, XS), pp. 2117–2120.
CIKM-2019-YangGWSX0 #network #summary
Query-Specific Knowledge Summarization with Entity Evolutionary Networks (CY, LG, ZW, JS, JX, JH0), pp. 2121–2124.
CIKM-2019-LiYH #clustering #graph #realtime
Real-time Edge Repartitioning for Dynamic Graph (HL, HY, JH), pp. 2125–2128.
CIKM-2019-HuangWWT #multi #named #network #self
DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting (SH, DW, XW, AT), pp. 2129–2132.
CIKM-2019-TianLWT #predict #re-engineering
Time Series Prediction with Interpretable Data Reconstruction (QT, JL, DW, AT), pp. 2133–2136.
CIKM-2019-LiuZH #graph #network #representation #towards
Towards Explainable Representation of Time-Evolving Graphs via Spatial-Temporal Graph Attention Networks (ZL, DZ, JH), pp. 2137–2140.
CIKM-2019-HuangWZLC #classification #network #prototype
Deep Prototypical Networks for Imbalanced Time Series Classification under Data Scarcity (CH0, XW, XZ, SL, NVC), pp. 2141–2144.
CIKM-2019-ChenLYZS #graph #network
Knowledge-aware Textual Entailment with Graph Attention Network (DC, YL, MY0, HTZ, YS), pp. 2145–2148.
CIKM-2019-MauryaLM #approximate #graph #network #performance
Fast Approximations of Betweenness Centrality with Graph Neural Networks (SKM, XL0, TM), pp. 2149–2152.
CIKM-2019-WangLL #interactive #network #predict
Neighborhood Interaction Attention Network for Link Prediction (ZW, YL, WL), pp. 2153–2156.
CIKM-2019-WuPDTZD #distance #graph #learning #network
Long-short Distance Aggregation Networks for Positive Unlabeled Graph Learning (MW, SP, LD, IWT, XZ, BD), pp. 2157–2160.
CIKM-2019-YangWCW #graph #network #predict #using
Using External Knowledge for Financial Event Prediction Based on Graph Neural Networks (YY, ZW, QC, LW), pp. 2161–2164.
CIKM-2019-ZhaoLF #recommendation
Cross-Domain Recommendation via Preference Propagation GraphNet (CZ, CL, CF), pp. 2165–2168.
CIKM-2019-WuWLH019a #named #overview #predict #rating
ARP: Aspect-aware Neural Review Rating Prediction (CW, FW, JL, YH, XX0), pp. 2169–2172.
CIKM-2019-YanCKWM #2d #named #network #recommendation
CosRec: 2D Convolutional Neural Networks for Sequential Recommendation (AY, SC, WCK, MW, JJM), pp. 2173–2176.
CIKM-2019-ChenL #recommendation
Data Poisoning Attacks on Cross-domain Recommendation (HC, JL), pp. 2177–2180.
CIKM-2019-SongCZX #memory management #network #recommendation
Session-based Recommendation with Hierarchical Memory Networks (BS, YC, WZ, CX), pp. 2181–2184.
CIKM-2019-ChenAJC #bias #recommendation
Correcting for Recency Bias in Job Recommendation (RCC, QA, GJ, WBC), pp. 2185–2188.
CIKM-2019-ZhaoZSL #network #recommendation
Motif Enhanced Recommendation over Heterogeneous Information Network (HZ, YZ, YS, DLL), pp. 2189–2192.
CIKM-2019-MalliaSSZ #integer
GPU-Accelerated Decoding of Integer Lists (AM, MS, TS, MZ), pp. 2193–2196.
CIKM-2019-ChenZLYY #approximate #matrix #modelling
Synergizing Local and Global Models for Matrix Approximation (CC0, HZ, DL, JY, XY), pp. 2197–2200.
CIKM-2019-Tang
Deep Colorization by Variation (ZT), pp. 2201–2204.
CIKM-2019-FujiwaraIKKAU #algorithm #bound #incremental #performance #random
Fast Random Forest Algorithm via Incremental Upper Bound (YF, YI, SK, AK, JA, NU), pp. 2205–2208.
CIKM-2019-LiuHDO #matrix
Convolution-Consistent Collective Matrix Completion (XL, JH, SD, LO), pp. 2209–2212.
CIKM-2019-DongZ #algorithm #performance #set
Faster Algorithms for k-Regret Minimizing Sets via Monotonicity and Sampling (QD, JZ), pp. 2213–2216.
CIKM-2019-RoiteroBUM #probability #simulation #towards
Towards Stochastic Simulations of Relevance Profiles (KR, AB, JU, SM), pp. 2217–2220.
CIKM-2019-LiHLDZ #detection #named #network
SpecAE: Spectral AutoEncoder for Anomaly Detection in Attributed Networks (YL, XH, JL, MD, NZ), pp. 2233–2236.
CIKM-2019-ZhangG0G #evolution #graph #on the
On Continuously Matching of Evolving Graph Patterns (QZ, DG, XZ0, AG), pp. 2237–2240.
CIKM-2019-HwangYKK #ambiguity #detection #precise
Time-Series Aware Precision and Recall for Anomaly Detection: Considering Variety of Detection Result and Addressing Ambiguous Labeling (WSH, JHY, JK, HK), pp. 2241–2244.
CIKM-2019-GiurgiuS #detection #multi
Additive Explanations for Anomalies Detected from Multivariate Temporal Data (IG, AS), pp. 2245–2248.
CIKM-2019-NeutatzMA #detection #fault #learning #named
ED2: A Case for Active Learning in Error Detection (FN, MM, ZA), pp. 2249–2252.
CIKM-2019-LiECL #clustering #identification #mobile #multi #network
Multi-scale Trajectory Clustering to Identify Corridors in Mobile Networks (LL, SME, CAC, CL), pp. 2253–2256.
CIKM-2019-XiaoZZXBZY #3d #multi #network #recognition
Multi-view Moments Embedding Network for 3D Shape Recognition (JX, YZ, PZ, KX, KB, CZ, WY), pp. 2257–2260.
CIKM-2019-GaoKPC #recognition
Active Entity Recognition in Low Resource Settings (NG, NK, RP, SC), pp. 2261–2264.
CIKM-2019-LiMB0G #adaptation #framework #novel #on the #recognition
On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability (KL0, MRM, BB, YF0, HPG), pp. 2265–2268.
CIKM-2019-XuWHL #multi #recognition
Exploiting Multiple Embeddings for Chinese Named Entity Recognition (CX, FW, JH, CL), pp. 2269–2272.
CIKM-2019-Gao0WL #bidirectional #interactive #network #recognition
Gate-based Bidirectional Interactive Decoding Network for Scene Text Recognition (YG, YC0, JW, HL), pp. 2273–2276.
CIKM-2019-YuPY #concurrent #modelling #recognition
Modeling Long-Range Context for Concurrent Dialogue Acts Recognition (YY, SP, GHY), pp. 2277–2280.
CIKM-2019-ShaposhnikovBGD #detection
Labelling for Venue Visit Detection by Matching Wi-Fi Hotspots with Businesses (DS, AAB, EG, AD), pp. 2281–2284.
CIKM-2019-LiY0X #component #network
Heterogeneous Components Fusion Network for Load Forecasting of Charging Stations (KL, FY, CF0, TX), pp. 2285–2288.
CIKM-2019-XiongZXL #learning
Learning Traffic Signal Control from Demonstrations (YX, GZ, KX, ZL), pp. 2289–2292.
CIKM-2019-BaiYK0LY #graph #network #predict
Spatio-Temporal Graph Convolutional and Recurrent Networks for Citywide Passenger Demand Prediction (LB, LY, SSK, XW0, WL0, ZY), pp. 2293–2296.
CIKM-2019-WuWS #analysis #collaboration
Collaborative Analysis for Computational Risk in Urban Water Supply Systems (DW, HW, RS), pp. 2297–2300.
CIKM-2019-WuLZQ #learning #recommendation
Long- and Short-term Preference Learning for Next POI Recommendation (YW, KL, GZ, XQ), pp. 2301–2304.
CIKM-2019-SheetritK #clustering #retrieval
Cluster-Based Focused Retrieval (ES, OK), pp. 2305–2308.
CIKM-2019-LuoSAZ0 #learning #multi #retrieval
Cross-modal Image-Text Retrieval with Multitask Learning (JL, YS, XA, ZZ, MY0), pp. 2309–2312.
CIKM-2019-XuZYACT #framework #image
A Unified Generation-Retrieval Framework for Image Captioning (CX, WZ, MY, XA, WC, JT), pp. 2313–2316.
CIKM-2019-GaoLL0 #effectiveness #performance #retrieval
A Lossy Compression Method on Positional Index for Efficient and Effective Retrieval (SG, JL, XL, GW0), pp. 2317–2320.
CIKM-2019-GuLL #interactive #multi #network
Interactive Matching Network for Multi-Turn Response Selection in Retrieval-Based Chatbots (JCG, ZHL, QL), pp. 2321–2324.
CIKM-2019-KuziLSJZ #adaptation #analysis #information retrieval #learning #rank
Analysis of Adaptive Training for Learning to Rank in Information Retrieval (SK, SL, SKKS, PPJ, CZ), pp. 2325–2328.
CIKM-2019-WangLZHG #e-commerce #interactive #named #network #recommendation
QPIN: A Quantum-inspired Preference Interactive Network for E-commerce Recommendation (PW, ZL, YZ, YH, LG), pp. 2329–2332.
CIKM-2019-BiTDMC #case study #dependence #multi
A Study of Context Dependencies in Multi-page Product Search (KB, CHT, YD, VM, WBC), pp. 2333–2336.
CIKM-2019-FuJHZ0CY #e-commerce
Query-bag Matching with Mutual Coverage for Information-seeking Conversations in E-commerce (ZF, FJ, WH, WZ, DZ0, HC, RY0), pp. 2337–2340.
CIKM-2019-YuanWLWHX #memory management #overview #predict #rating
Neural Review Rating Prediction with User and Product Memory (ZY, FW, JL, CW, YH, XX0), pp. 2341–2344.
CIKM-2019-ManchandaSK #e-commerce #query
Intent Term Weighting in E-commerce Queries (SM, MS, GK), pp. 2345–2348.
CIKM-2019-ChenZY #categorisation #e-commerce #fine-grained
Fine-Grained Product Categorization in E-commerce (HC, JZ, DY), pp. 2349–2352.
CIKM-2019-FanBSL #classification #fine-grained #network #prototype #scalability
Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features (MF, YB, MS, PL0), pp. 2353–2356.
CIKM-2019-0002CZTZG #classification #graph #named
Meta-GNN: On Few-shot Node Classification in Graph Meta-learning (FZ0, CC, KZ, GT, TZ, JG), pp. 2357–2360.
CIKM-2019-WuH19a #classification
Enriching Pre-trained Language Model with Entity Information for Relation Classification (SW, YH), pp. 2361–2364.
CIKM-2019-GozuacikBBC #classification #concept #detection
Unsupervised Concept Drift Detection with a Discriminative Classifier (ÖG, AB, HRB, FC), pp. 2365–2368.
CIKM-2019-KimRG #ambiguity #classification #hybrid
Hybrid Deep Pairwise Classification for Author Name Disambiguation (KK, SR, CLG), pp. 2369–2372.
CIKM-2019-Pasca #approximate #detection #lightweight #wiki
Approximate Definitional Constructs as Lightweight Evidence for Detecting Classes Among Wikipedia Articles (MP), pp. 2373–2376.
CIKM-2019-ZhangLY #generative #towards
Towards the Gradient Vanishing, Divergence Mismatching and Mode Collapse of Generative Adversarial Nets (ZZ, CL, JY), pp. 2377–2380.
CIKM-2019-LiuLLD0 #generative #information management #topic
Generating Paraphrase with Topic as Prior Knowledge (YL, ZL, FL, QD, WW0), pp. 2381–2384.
CIKM-2019-LiuLLZS #classification #identification
Sexual Harassment Story Classification and Key Information Identification (YL, QL, XL, QZ, LS), pp. 2385–2388.
CIKM-2019-Liu0 #overview #summary
Neural Review Summarization Leveraging User and Product Information (HL, XW0), pp. 2389–2392.
CIKM-2019-XiaWY #comprehension #learning #multi
Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning (JX, CW, MY), pp. 2393–2396.
CIKM-2019-ChengLCHHCMH #learning #named
DIRT: Deep Learning Enhanced Item Response Theory for Cognitive Diagnosis (SC, QL0, EC, ZH, ZH, YC, HM, GH), pp. 2397–2400.
CIKM-2019-WuWQLH0 #gender #microblog #predict #representation
Neural Gender Prediction in Microblogging with Emotion-aware User Representation (CW, FW, TQ, JL, YH, XX0), pp. 2401–2404.
CIKM-2019-JimmyZKD #empirical #health #retrieval
Health Card Retrieval for Consumer Health Search: An Empirical Investigation of Methods (J, GZ, BK, GD), pp. 2405–2408.
CIKM-2019-WuWHX #estimation #named
NICE: Neural In-Hospital Cost Estimation from Medical Records (CW, FW, YH, XX0), pp. 2409–2412.
CIKM-2019-WangLL19a #evolution #modelling #sentiment #social
Modeling Sentiment Evolution for Social Incidents (YW, HL, CL), pp. 2413–2416.
CIKM-2019-ZhangTH #adaptation
Adaptive Feature Redundancy Minimization (RZ0, HT, YH), pp. 2417–2420.
CIKM-2019-DuttaL #clique #graph #statistics
Finding a Maximum Clique in Dense Graphs via χ2 Statistics (SD0, JL), pp. 2421–2424.
CIKM-2019-WangGLML #bias #on the #testing
On Heavy-user Bias in A/B Testing (YW, SG, JL, AM, SL), pp. 2425–2428.
CIKM-2019-CalzavaraLT
Adversarial Training of Gradient-Boosted Decision Trees (SC, CL, GT), pp. 2429–2432.
CIKM-2019-CaiYZR #network
Adversarial Structured Neural Network Pruning (XC, JY, FZ, SR), pp. 2433–2436.
CIKM-2019-BremenDJ #logic programming #probability #query
Ontology-Mediated Queries over Probabilistic Data via Probabilistic Logic Programming (TvB, AD, JCJ), pp. 2437–2440.
CIKM-2019-ChenTL #learning #query #social
Query Embedding Learning for Context-based Social Search (YCC, YCT, CTL), pp. 2441–2444.
CIKM-2019-ChenWCKQ #dataset #generative #query #towards
Towards More Usable Dataset Search: From Query Characterization to Snippet Generation (JC, XW, GC0, EK, YQ), pp. 2445–2448.
CIKM-2019-GhoshS #behaviour
Session-based Search Behavior in Naturalistic Settings for Learning-related Tasks (SG, CS), pp. 2449–2452.
CIKM-2019-LuoCXQ #community #network
Best Co-Located Community Search in Attributed Networks (JL, XC, XX, QQ), pp. 2453–2456.
CIKM-2019-YafayA #performance #query
Caching Scores for Faster Query Processing with Dynamic Pruning in Search Engines (EY, ISA), pp. 2457–2460.
CIKM-2019-MaoSSSS #learning #process
Investigating the Learning Process in Job Search: A Longitudinal Study (JM, DS, SS, FS, MS), pp. 2461–2464.
CIKM-2019-LuoGRML #set
Set Reconciliation with Cuckoo Filters (LL, DG, OR, RTBM, XL), pp. 2465–2468.
CIKM-2019-ConteFPT #distributed
Shared-Nothing Distributed Enumeration of 2-Plexes (AC, DF, MP, RT), pp. 2469–2472.
CIKM-2019-Apfelbaum #database
Estimating the Number of Distinct Items in a Database by Sampling (RA), pp. 2473–2476.
CIKM-2019-ChenLCHT #effectiveness #resource management
Cost-effective Resource Provisioning for Spark Workloads (YC, JL, CC, MH, ST), pp. 2477–2480.
CIKM-2019-SalloumWH #approximate #big data #clustering #data analysis
A Sampling-Based System for Approximate Big Data Analysis on Computing Clusters (SS, YW, JZH), pp. 2481–2484.
CIKM-2019-ChenMLZM #dataset #named #scalability #web
TianGong-ST: A New Dataset with Large-scale Refined Real-world Web Search Sessions (JC, JM, YL, MZ0, SM), pp. 2485–2488.
CIKM-2019-ZhangPZZWXJ #behaviour #e-commerce #visual notation
Virtual ID Discovery from E-commerce Media at Alibaba: Exploiting Richness of User Click Behavior for Visual Search Relevance (YZ, PP, YZ, KZ, JW, YX, RJ), pp. 2489–2497.
CIKM-2019-ZhangYWH #automation #e-commerce #learning #named #ranking #realtime
Autor3: Automated Real-time Ranking with Reinforcement Learning in E-commerce Sponsored Search Advertising (YZ, ZY, LW, LH), pp. 2499–2507.
CIKM-2019-QiuWCZHCZB #e-commerce #network
Cross-domain Attention Network with Wasserstein Regularizers for E-commerce Search (MQ, BW, CC, XZ, JH0, DC, JZ, FSB), pp. 2509–2515.
CIKM-2019-LuoYZGY #concept #e-commerce
Conceptualize and Infer User Needs in E-commerce (XL, YY, KQZ, YG, KY), pp. 2517–2525.
CIKM-2019-ChenJZPNYWLXG #e-commerce #learning
Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds (DC, JJ, WZ0, FP, LN, CY, JW0, HL, JX, KG), pp. 2527–2535.
CIKM-2019-HuangYX #detection #graph #learning
System Deterioration Detection and Root Cause Learning on Time Series Graphs (HH, SY, YX), pp. 2537–2545.
CIKM-2019-ChengZYTN0 #framework #predict
A Dynamic Default Prediction Framework for Networked-guarantee Loans (DC, YZ, FY, YT, ZN, LZ0), pp. 2547–2555.
CIKM-2019-ArianAAKSS #feature model #network #predict
Feature Enhancement via User Similarities Networks for Improved Click Prediction in Yahoo Gemini Native (MA, EA, MA, YK, OS, RS), pp. 2557–2565.
CIKM-2019-ZhaoPZZWZXJ #distributed #graph #scalability #visual notation
Large-Scale Visual Search with Binary Distributed Graph at Alibaba (KZ, PP, YZ, YZ, CW, YZ, YX, RJ), pp. 2567–2575.
CIKM-2019-LiuWYZSMZGZYQ #graph #learning #mobile #optimisation #representation
Graph Representation Learning for Merchant Incentive Optimization in Mobile Payment Marketing (ZL, DW, QY, ZZ, YS, JM, WZ, JG, JZ, SY, YQ), pp. 2577–2584.
CIKM-2019-ZhuGLMOZWGC #adaptation #interactive #recommendation
Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU (YZ, YG, QL, YM, WO, JZ, BW, ZG, DC), pp. 2585–2593.
CIKM-2019-WangJH0YZWHWLXG #adaptation #learning #realtime
Learning Adaptive Display Exposure for Real-Time Advertising (WW, JJ, JH, CC0, CY, WZ0, JW0, XH, YW, HL, JX, KG), pp. 2595–2603.
CIKM-2019-ZhaoLZWJXWM #evaluation #matter #problem #what
What You Look Matters?: Offline Evaluation of Advertising Creatives for Cold-start Problem (ZZ, LL, BZ0, MW, YJ, LX, FW, WYM), pp. 2605–2613.
CIKM-2019-LiLWXZHKCLL #multi #network #recommendation
Multi-Interest Network with Dynamic Routing for Recommendation at Tmall (CL, ZL, MW, YX, HZ, PH, GK, QC, WL, DLL), pp. 2615–2623.
CIKM-2019-RaoSPJCTGK #evolution #learning #recommendation
Learning to be Relevant: Evolution of a Course Recommendation System (SR, KS, GP, MJ, SC, VT, JG, DK), pp. 2625–2633.
CIKM-2019-LvJYSLYN #named #online #recommendation #scalability
SDM: Sequential Deep Matching Model for Online Large-scale Recommender System (FL, TJ, CY, FS, QL, KY, WN), pp. 2635–2643.
CIKM-2019-ZhouJZQJWWYY #learning #multi
Multi-Agent Reinforcement Learning for Order-dispatching via Order-Vehicle Distribution Matching (MZ, JJ, WZ0, ZQ, YJ, CW, GW, YY0, JY), pp. 2645–2653.
CIKM-2019-FanHZLLW #learning #named #scalability
MONOPOLY: Learning to Price Public Facilities for Revaluing Private Properties with Large-Scale Urban Data (MF, JH, AZ, YL, PL0, HW), pp. 2655–2663.
CIKM-2019-YiDLLZZ #approach #modelling #named
CityTraffic: Modeling Citywide Traffic via Neural Memorization and Generalization Approach (XY, ZD, TL, TL, JZ, YZ), pp. 2665–2671.
CIKM-2019-HuangZDB #network
Deep Dynamic Fusion Network for Traffic Accident Forecasting (CH, CZ, PD, LB), pp. 2673–2681.
CIKM-2019-PanWWYZZ #matrix #network #predict
Matrix Factorization for Spatio-Temporal Neural Networks with Applications to Urban Flow Prediction (ZP, ZW, WW, YY, JZ, YZ), pp. 2683–2691.
CIKM-2019-ArkoudasY #semantics
Semantically Driven Auto-completion (KA, MY), pp. 2693–2701.
CIKM-2019-LiQLYL #detection #graph #network #overview
Spam Review Detection with Graph Convolutional Networks (AL, ZQ, RL, YY, DL), pp. 2703–2711.
CIKM-2019-KhabiriGVPM #classification #industrial #word
Industry Specific Word Embedding and its Application in Log Classification (EK, WMG, BV, DP, PM), pp. 2713–2721.
CIKM-2019-ShiRWR #classification #multi #online #sentiment
Document-Level Multi-Aspect Sentiment Classification for Online Reviews of Medical Experts (TS, VR, SW, CKR), pp. 2723–2731.
CIKM-2019-KimSRLW #learning #predict
Deep Learning for Blast Furnaces: Skip-Dense Layers Deep Learning Model to Predict the Remaining Time to Close Tap-holes for Blast Furnaces (KK, BS, SHR, SL, SSW), pp. 2733–2741.
CIKM-2019-MaAWSCTY #data analysis #graph #learning #similarity
Deep Graph Similarity Learning for Brain Data Analysis (GM, NKA, TLW, DS, MWC, NBTB, PSY), pp. 2743–2751.
CIKM-2019-LiLXLC #how #source code
How to Find It Better?: Cross-Learning for WeChat Mini Programs (HL, ZL, SX, ZL, XC), pp. 2753–2761.
CIKM-2019-ZhangLZLWWX #benchmark #learning #metric #multi #named #representation
Job2Vec: Job Title Benchmarking with Collective Multi-View Representation Learning (DZ, JL, HZ, YL, LW, PW, HX), pp. 2763–2771.
CIKM-2019-JiangCBWYN #learning #predict #smarttech
Learning to Predict Human Stress Level with Incomplete Sensor Data from Wearable Devices (JYJ, ZC, ALB, WW0, SDY, DN), pp. 2773–2781.
CIKM-2019-FangSCG #fine-grained #predict
Fine-Grained Fuel Consumption Prediction (CF, SS, ZC, AG), pp. 2783–2791.
CIKM-2019-AharonKLSBESSZ #predict
Soft Frequency Capping for Improved Ad Click Prediction in Yahoo Gemini Native (MA, YK, RL, OS, AB, NE, AS, AS, AZ), pp. 2793–2801.
CIKM-2019-DoanYR #modelling
Adversarial Factorization Autoencoder for Look-alike Modeling (KDD, PY, CKR), pp. 2803–2812.
CIKM-2019-TianKA0C #adaptation #concept #detection #health #monitoring #online
Concept Drift Adaption for Online Anomaly Detection in Structural Health Monitoring (HT, NLDK, AA, YW0, FC0), pp. 2813–2821.
CIKM-2019-XinEBYLZY0 #multi #online #predict
Multi-task based Sales Predictions for Online Promotions (SX, ME, JB, CY, ZL, XZ, YY, CW0), pp. 2823–2831.
CIKM-2019-YinRYZZZLZ #case study #modelling #multi
Experimental Study of Multivariate Time Series Forecasting Models (JY, WR, MY, JZ, KZ, CZ, JL, QZ), pp. 2833–2839.
CIKM-2019-TaoGFCYZ #game studies #learning #multi #named #online #predict
GMTL: A GART Based Multi-task Learning Model for Multi-Social-Temporal Prediction in Online Games (JT, LG, CF, LC, DY, SZ), pp. 2841–2849.
CIKM-2019-YangDTTZQD #composition #learning #predict #relational #visual notation
Learning Compositional, Visual and Relational Representations for CTR Prediction in Sponsored Search (XY, TD, WT, XT, JZ, SQ, ZD), pp. 2851–2859.
CIKM-2019-BoutetG #privacy #what
Inspect What Your Location History Reveals About You: Raising user awareness on privacy threats associated with disclosing his location data (AB, SG), pp. 2861–2864.
CIKM-2019-MiloMY #analysis #datalog #named #probability
PODIUM: Probabilistic Datalog Analysis via Contribution Maximization (TM, YM, BY), pp. 2865–2868.
CIKM-2019-Jatowt0BD #analysis #documentation
Document in Context of its Time (DICT): Providing Temporal Context to Support Analysis of Past Documents (AJ, RC0, SSB, AD), pp. 2869–2872.
CIKM-2019-ElMS #data analysis #learning #named
ATENA: An Autonomous System for Data Exploration Based on Deep Reinforcement Learning (OBE, TM, AS), pp. 2873–2876.
CIKM-2019-GuillyPSI #database #interactive #named #sql
ExplIQuE: Interactive Databases Exploration with SQL (MLG, JMP, VMS, IFI), pp. 2877–2880.
CIKM-2019-WangCCCHHLC #bound #interactive #mining #mobile #named #process #visualisation
TraVis: An Interactive Visualization System for Mining Inbound Traveler Activities by Leveraging Mobile Ad Request Data (PXW, HC, WQC, CCC, YHH, THH, YL, CHC), pp. 2881–2884.
CIKM-2019-PaganelliSMI0 #comprehension
Understanding Data in the Blink of an Eye (MP, PS, AM, MI, FG0), pp. 2885–2888.
CIKM-2019-BernhauerSHPS #modelling #named #similarity
SIMILANT: An Analytic Tool for Similarity Modeling (DB, TS, IH, LP, MS), pp. 2889–2892.
CIKM-2019-SunAJHS #dataset #flexibility #named
MithraLabel: Flexible Dataset Nutritional Labels for Responsible Data Science (CS, AA, HVJ, BH, JS), pp. 2893–2896.
CIKM-2019-JungLPP #framework #named #using
PRIVATA: Differentially Private Data Market Framework using Negotiation-based Pricing Mechanism (KJ, JL, KP, SP), pp. 2897–2900.
CIKM-2019-HuangLCKQ #named
MiCRon: Making Sense of News via Relationship Subgraphs (ZH, SL, GC0, EK, YQ), pp. 2901–2904.
CIKM-2019-OppoldH #data-driven #named #personalisation
LuPe: A System for Personalized and Transparent Data-driven Decisions (SO, MH), pp. 2905–2908.
CIKM-2019-MohantyR #effectiveness #graph #named #towards
Insta-Search: Towards Effective Exploration of Knowledge Graphs (MM, MR), pp. 2909–2912.
CIKM-2019-Liu0PLZZ #named
SkyRec: Finding Pareto Optimal Groups (JL, LX0, JP, JL, HZ, SZ), pp. 2913–2916.
CIKM-2019-ZhengQJCM #interactive #named
CurrentClean: Interactive Change Exploration and Cleaning of Stale Data (ZZ, TMQ, ZJ, FC, MM), pp. 2917–2920.
CIKM-2019-HaoYLLJL #distributed #named #pattern matching
PatMat: A Distributed Pattern Matching Engine with Cypher (KH, ZY, LL, ZL, XJ, XL0), pp. 2921–2924.
CIKM-2019-GalitskyI #on the
On a Chatbot Conducting Virtual Dialogues (BG, DII), pp. 2925–2928.
CIKM-2019-0001SKJ #named #recommendation
Rehab-Path: Recommending Alcohol and Drug-free Routes (YZ0, PS, YK, AJ), pp. 2929–2932.
CIKM-2019-BespinyowongT #graph #named
kBrowse: kNN Graph Browser (RB, AKHT), pp. 2933–2936.
CIKM-2019-VergoulisCKDTD #exclamation #ranking
BIP! Finder: Facilitating Scientific Literature Search by Exploiting Impact-Based Ranking (TV, SC, IK, PD, CT, TD), pp. 2937–2940.
CIKM-2019-CaoDGMT #named #network #query
BeLink: Querying Networks of Facts, Statements and Beliefs (TDC, LD, FG, IM, XT), pp. 2941–2944.
CIKM-2019-PaganelliS0V #named #rule-based
TuneR: Fine Tuning of Rule-based Entity Matchers (MP, PS, FG0, YV), pp. 2945–2948.
CIKM-2019-RoySMSG #information retrieval #named #plugin
I-REX: A Lucene Plugin for EXplainable IR (DR, SS, MM, BS, DG), pp. 2949–2952.
CIKM-2019-BozarthDHJMPPQS #deployment #learning #ubiquitous
Model Asset eXchange: Path to Ubiquitous Deep Learning Deployment (AB, BD, FH, DJ, KM, NP, SP, GdQ, SS, PT, XW, HX0, FRR, VB), pp. 2953–2956.
CIKM-2019-GershteinMN #e-commerce #effectiveness #named #reduction
ReducE-Comm: Effective Inventory Reduction System for E-Commerce (SG, TM, SN), pp. 2957–2960.
CIKM-2019-CuiSW0L #detection #named
dEFEND: A System for Explainable Fake News Detection (LC, KS, SW, DL0, HL0), pp. 2961–2964.
CIKM-2019-DuanX #enterprise #graph #information management
Enterprise Knowledge Graph From Specific Business Task to Enterprise Knowledge Management (RD, YX), pp. 2965–2966.
CIKM-2019-MueenCM #detection #metric #social
Taming Social Bots: Detection, Exploration and Measurement (AM, NC, AJM), pp. 2967–2968.
CIKM-2019-Gurajada0QS
Learning-Based Methods with Human-in-the-Loop for Entity Resolution (SG, LP0, KQ0, PS), pp. 2969–2970.
CIKM-2019-Wang0C #graph #learning #reasoning #recommendation
Learning and Reasoning on Graph for Recommendation (XW, XH0, TSC), pp. 2971–2972.
CIKM-2019-ShiY #analysis #network
Recent Developments of Deep Heterogeneous Information Network Analysis (CS, PSY), pp. 2973–2974.
CIKM-2019-LuLW0 #database #machine learning #modelling #similarity #string
Synergy of Database Techniques and Machine Learning Models for String Similarity Search and Join (JL, CL, JW, CL0), pp. 2975–2976.
CIKM-2019-ShanahanD #detection #pipes and filters #realtime
Realtime Object Detection via Deep Learning-based Pipelines (JGS, LD), pp. 2977–2978.
CIKM-2019-ChelliahZS #mining #multi #overview #recommendation
Recommendation for Multi-stakeholders and through Neural Review Mining (MC, YZ, SS), pp. 2979–2981.
CIKM-2019-VazirgiannisNS #graph #kernel #machine learning
Machine Learning on Graphs with Kernels (MV, GN, GS), pp. 2983–2984.
CIKM-2019-PaikXL #mining
DTMBIO 2019: The Thirteenth International Workshop on Data and Text Mining in Biomedical Informatics (HP, RX, DL), pp. 2985–2987.
CIKM-2019-UkilMJF #quality
Knowledge-Driven Analytics and Systems Impacting Human Quality of Life (AU, LM, AJ, JF), pp. 2989–2990.
CIKM-2019-ShiYZ #analysis #network
HENA 2019: The 3rd Workshop of Heterogeneous Information Network Analysis and Applications (CS, YY, JZ), pp. 2991–2992.
CIKM-2019-ChengGW #retrieval
EYRE 2019: 2nd International Workshop on EntitY REtrieval (GC0, KG, JW), pp. 2993–2994.
CIKM-2019-0001JZZLY
CIKM 2019 Workshop on Artificial Intelligence in Transportation (AI in transportation) (WZ0, HJ, LZ, HZ, ZJL, JY), pp. 2995–2996.
CIKM-2019-ShenTB #graph #learning #representation
GRLA 2019: The first International Workshop on Graph Representation Learning and its Applications (HS, JT, PB), pp. 2997–2998.
CIKM-2019-SivrikayaAL #parametricity #recommendation
International Workshop on Model Selection and Parameter Tuning in Recommender Systems (FS, SA, DL), pp. 2999–3000.
CIKM-2019-AnelliN #recommendation
2nd Workshop on Knowledge-aware and Conversational Recommender Systems - KaRS (VWA, TDN), pp. 3001–3002.
CIKM-2019-0001LKW
BigScholar 2019: The 6th Workshop on Big Scholarly Data (FX0, HL, IK, KW), pp. 3003–3004.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.