Kamalika Chaudhuri, Ruslan Salakhutdinov
Proceedings of the 36th International Conference on Machine Learning
ICML, 2019.
Contents (774 items)
- ICML-2019-AbbatiWO0SB
- AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs (GA, PW, MAO, AK0, BS, SB), pp. 1–10.
- ICML-2019-AbelsRLNS #learning #multi
- Dynamic Weights in Multi-Objective Deep Reinforcement Learning (AA, DMR, TL, AN, DS), pp. 11–20.
- ICML-2019-Abu-El-HaijaPKA #architecture #graph #higher-order #named
- MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (SAEH, BP, AK, NA, KL, HH, GVS, AG), pp. 21–29.
- ICML-2019-AcharyaCT
- Communication-Constrained Inference and the Role of Shared Randomness (JA, CLC, HT), pp. 30–39.
- ICML-2019-AcharyaSFS #communication #distributed #learning #sublinear
- Distributed Learning with Sublinear Communication (JA, CDS, DJF, KS), pp. 40–50.
- ICML-2019-AcharyaS #communication #complexity #estimation
- Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters (JA, ZS), pp. 51–60.
- ICML-2019-AdamsJWS #fault #learning #metric #modelling
- Learning Models from Data with Measurement Error: Tackling Underreporting (RA, YJ, XW, SS), pp. 61–70.
- ICML-2019-AdelW #approach #learning #named #visual notation
- TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning (TA, AW), pp. 71–81.
- ICML-2019-AdigaKMRV
- PAC Learnability of Node Functions in Networked Dynamical Systems (AA, CJK, MM, SSR, AV), pp. 82–91.
- ICML-2019-Agarwal #automation
- Static Automatic Batching In TensorFlow (AA), pp. 92–101.
- ICML-2019-AgarwalBCHSZZ #adaptation #performance
- Efficient Full-Matrix Adaptive Regularization (NA, BB, XC, EH, KS, CZ, YZ), pp. 102–110.
- ICML-2019-AgarwalBHKS #online
- Online Control with Adversarial Disturbances (NA, BB, EH, SMK, KS), pp. 111–119.
- ICML-2019-AgarwalDW #algorithm
- Fair Regression: Quantitative Definitions and Reduction-Based Algorithms (AA, MD, ZSW), pp. 120–129.
- ICML-2019-AgarwalLS0 #learning
- Learning to Generalize from Sparse and Underspecified Rewards (RA, CL, DS, MN0), pp. 130–140.
- ICML-2019-AgrawalTHB #interactive #kernel #performance
- The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions (RA, BLT, JHH, TB), pp. 141–150.
- ICML-2019-AhmedR0S #comprehension #optimisation #policy
- Understanding the Impact of Entropy on Policy Optimization (ZA, NLR, MN0, DS), pp. 151–160.
- ICML-2019-AivodjiAFGHT #named
- Fairwashing: the risk of rationalization (UA, HA, OF, SG, SH, AT), pp. 161–170.
- ICML-2019-AkimotoSYUSN #adaptation #architecture #probability
- Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search (YA, SS, NY, KU, SS, KN), pp. 171–180.
- ICML-2019-AkrourP0N #algorithm #approximate #policy
- Projections for Approximate Policy Iteration Algorithms (RA, JP, JP0, GN), pp. 181–190.
- ICML-2019-AlaaS #modelling #validation
- Validating Causal Inference Models via Influence Functions (AMA, MvdS), pp. 191–201.
- ICML-2019-AlbuquerqueMDCF #generative #multi #network
- Multi-objective training of Generative Adversarial Networks with multiple discriminators (IA, JM, TD, BC, THF, IM), pp. 202–211.
- ICML-2019-AletJVRLK #adaptation #graph #memory management #network
- Graph Element Networks: adaptive, structured computation and memory (FA, AKJ, MBV, AR, TLP, LPK), pp. 212–222.
- ICML-2019-AllenH #comprehension #towards #word
- Analogies Explained: Towards Understanding Word Embeddings (CA, TMH), pp. 223–231.
- ICML-2019-AllenSST #infinity #learning #prototype
- Infinite Mixture Prototypes for Few-shot Learning (KRA, ES, HS, JBT), pp. 232–241.
- ICML-2019-Allen-ZhuLS #convergence #learning
- A Convergence Theory for Deep Learning via Over-Parameterization (ZAZ, YL, ZS), pp. 242–252.
- ICML-2019-AlviRCRO #optimisation
- Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation (ASA, BXR, JPC, SJR, MAO), pp. 253–262.
- ICML-2019-AminKMV #bound #difference #privacy #trade-off
- Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy (KA, AK, AMM, SV), pp. 263–271.
- ICML-2019-AnconaOG #algorithm #approximate #network #polynomial
- Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Value Approximation (MA, CÖ, MHG), pp. 272–281.
- ICML-2019-AndertonA #approach #scalability
- Scaling Up Ordinal Embedding: A Landmark Approach (JA, JAA), pp. 282–290.
- ICML-2019-AnilLG #approximate #sorting
- Sorting Out Lipschitz Function Approximation (CA, JL, RBG), pp. 291–301.
- ICML-2019-AntelmiARL #analysis #multi #semistructured data
- Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data (LA, NA, PR, ML), pp. 302–311.
- ICML-2019-ArazoOAOM #modelling
- Unsupervised Label Noise Modeling and Loss Correction (EA, DO, PA, NEO, KM), pp. 312–321.
- ICML-2019-AroraDHLW #analysis #fine-grained #network #optimisation
- Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks (SA, SSD, WH, ZL0, RW), pp. 322–332.
- ICML-2019-AssadiBM #composition #distributed #random
- Distributed Weighted Matching via Randomized Composable Coresets (SA, MB, VSM), pp. 333–343.
- ICML-2019-AssranLBR #distributed #learning #probability
- Stochastic Gradient Push for Distributed Deep Learning (MA, NL, NB, MR), pp. 344–353.
- ICML-2019-AstudilloF #optimisation
- Bayesian Optimization of Composite Functions (RA, PIF), pp. 354–363.
- ICML-2019-AtasuM #approximate #distance
- Linear-Complexity Data-Parallel Earth Mover's Distance Approximations (KA, TM), pp. 364–373.
- ICML-2019-AwanKRS #exponential #functional
- Benefits and Pitfalls of the Exponential Mechanism with Applications to Hilbert Spaces and Functional PCA (JA, AK, MR, ABS), pp. 374–384.
- ICML-2019-AydoreTV #probability
- Feature Grouping as a Stochastic Regularizer for High-Dimensional Structured Data (SA, BT, GV), pp. 385–394.
- ICML-2019-AyedLC #behaviour #modelling #process #statistics
- Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior (FA, JL, FC), pp. 395–404.
- ICML-2019-BackursIOSVW #clustering #scalability
- Scalable Fair Clustering (AB, PI, KO, BS, AV, TW), pp. 405–413.
- ICML-2019-BalajiHCF #approach #statistics
- Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs (YB, HH, RC, SF), pp. 414–423.
- ICML-2019-BalcanKT
- Provable Guarantees for Gradient-Based Meta-Learning (MFB, MK, AT), pp. 424–433.
- ICML-2019-BalduzziGB0PJG #game studies #learning #symmetry
- Open-ended learning in symmetric zero-sum games (DB, MG, YB, WC0, JP, MJ, TG), pp. 434–443.
- ICML-2019-BalinAZ #feature model #re-engineering
- Concrete Autoencoders: Differentiable Feature Selection and Reconstruction (MFB, AA, JYZ), pp. 444–453.
- ICML-2019-BansalLRSW #higher-order #logic #machine learning #named #proving #theorem proving
- HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving (KB, SML, MNR, CS, SW), pp. 454–463.
- ICML-2019-BapstSDSKBH #physics
- Structured agents for physical construction (VB, ASG, CD, KLS, PK, PWB, JBH), pp. 464–474.
- ICML-2019-BaranchukPSB #graph #learning #similarity
- Learning to Route in Similarity Graphs (DB, DP, AS, AB), pp. 475–484.
- ICML-2019-BarrosPW #memory management #personalisation #recognition
- A Personalized Affective Memory Model for Improving Emotion Recognition (PVAB, GIP, SW), pp. 485–494.
- ICML-2019-BartlettGHV #adaptation
- Scale-free adaptive planning for deterministic dynamics & discounted rewards (PLB, VG, JH, MV), pp. 495–504.
- ICML-2019-BasuGLS #classification #streaming
- Pareto Optimal Streaming Unsupervised Classification (SB0, SG, BL, SS), pp. 505–514.
- ICML-2019-BateniCEFMR #category theory #optimisation
- Categorical Feature Compression via Submodular Optimization (MB, LC, HE, TF, VSM, AR), pp. 515–523.
- ICML-2019-BatsonR #named #self
- Noise2Self: Blind Denoising by Self-Supervision (JB, LR), pp. 524–533.
- ICML-2019-BeatsonA #optimisation #performance #random
- Efficient optimization of loops and limits with randomized telescoping sums (AB, RPA), pp. 534–543.
- ICML-2019-BeckerPGZTN #network
- Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces (PB, HP, GHWG, CZ, CJT, GN), pp. 544–552.
- ICML-2019-Becker-Ehmck0S #linear
- Switching Linear Dynamics for Variational Bayes Filtering (PBE, JP0, PvdS), pp. 553–562.
- ICML-2019-BehpourLZ #learning #predict #probability
- Active Learning for Probabilistic Structured Prediction of Cuts and Matchings (SB, AL, BDZ), pp. 563–572.
- ICML-2019-BehrmannGCDJ #network
- Invertible Residual Networks (JB, WG, RTQC, DD, JHJ), pp. 573–582.
- ICML-2019-BelilovskyEO #learning
- Greedy Layerwise Learning Can Scale To ImageNet (EB, ME, EO), pp. 583–593.
- ICML-2019-BenyahiaYBJDSM #multi
- Overcoming Multi-model Forgetting (YB, KY, KBS, MJ, ACD, MS, CM), pp. 594–603.
- ICML-2019-BenzingGMMS #approximate #learning #realtime
- Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning (FB, MMG, AM, AM, AS), pp. 604–613.
- ICML-2019-BertranMPQRRS #obfuscation
- Adversarially Learned Representations for Information Obfuscation and Inference (MB, NM, AP, QQ, MRDR, GR, GS), pp. 614–623.
- ICML-2019-BeygelzimerPSTW #algorithm #classification #linear #multi #performance
- Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case (AB, DP, BS, DT, CYW, CZ), pp. 624–633.
- ICML-2019-BhagojiCMC #learning #lens
- Analyzing Federated Learning through an Adversarial Lens (ANB, SC, PM, SBC), pp. 634–643.
- ICML-2019-BianB0
- Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference (YAB, JMB, AK0), pp. 644–653.
- ICML-2019-BibautMVL #evaluation #learning #performance
- More Efficient Off-Policy Evaluation through Regularized Targeted Learning (AB, IM, NV, MJvdL), pp. 654–663.
- ICML-2019-BiettiMCM #kernel #network
- A Kernel Perspective for Regularizing Deep Neural Networks (AB, GM, DC, JM), pp. 664–674.
- ICML-2019-BlauM #trade-off
- Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff (YB, TM), pp. 675–685.
- ICML-2019-BodaA #correlation #fault #how #online
- Correlated bandits or: How to minimize mean-squared error online (VPB, PLA), pp. 686–694.
- ICML-2019-BojchevskiG #graph
- Adversarial Attacks on Node Embeddings via Graph Poisoning (AB, SG), pp. 695–704.
- ICML-2019-BorsosCL0 #online #reduction
- Online Variance Reduction with Mixtures (ZB, SC, KYL, AK0), pp. 705–714.
- ICML-2019-BoseH #composition #constraints #graph
- Compositional Fairness Constraints for Graph Embeddings (AJB, WLH), pp. 715–724.
- ICML-2019-BouthillierLV #research
- Unreproducible Research is Reproducible (XB, CL, PV), pp. 725–734.
- ICML-2019-BraunPTW
- Blended Conditonal Gradients (GB, SP, DT, SW), pp. 735–743.
- ICML-2019-BravermanJKW #clustering #order
- Coresets for Ordered Weighted Clustering (VB, SHCJ, RK, XW), pp. 744–753.
- ICML-2019-BregereGGS
- Target Tracking for Contextual Bandits: Application to Demand Side Management (MB, PG, YG, GS), pp. 754–763.
- ICML-2019-BridgesGFVH
- Active Manifolds: A non-linear analogue to Active Subspaces (RAB, ADG, CF, MEV, CH), pp. 764–772.
- ICML-2019-BrookesPL #adaptation #design #robust
- Conditioning by adaptive sampling for robust design (DHB, HP, JL), pp. 773–782.
- ICML-2019-BrownGNN #learning
- Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations (DSB, WG, PN, SN), pp. 783–792.
- ICML-2019-BrownLGS
- Deep Counterfactual Regret Minimization (NB, AL, SG, TS), pp. 793–802.
- ICML-2019-BrunetAAZ #bias #comprehension #word
- Understanding the Origins of Bias in Word Embeddings (MEB, CAH, AA, RSZ), pp. 803–811.
- ICML-2019-BrutzkusGE #latency #privacy
- Low Latency Privacy Preserving Inference (AB, RGB, OE), pp. 812–821.
- ICML-2019-BrutzkusG #modelling #problem #why
- Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem (AB, AG), pp. 822–830.
- ICML-2019-BubeckLPR #constraints
- Adversarial examples from computational constraints (SB, YTL, EP, IPR), pp. 831–840.
- ICML-2019-BuchnikCHM #self
- Self-similar Epochs: Value in arrangement (EB, EC, AH, YM), pp. 841–850.
- ICML-2019-BunneA0J #generative #learning #modelling
- Learning Generative Models across Incomparable Spaces (CB, DAM, AK0, SJ), pp. 851–861.
- ICML-2019-BurtRW #convergence #process
- Rates of Convergence for Sparse Variational Gaussian Process Regression (DRB, CER, MvdW), pp. 862–871.
- ICML-2019-ByrdL #learning #question #what
- What is the Effect of Importance Weighting in Deep Learning? (JB, ZCL), pp. 872–881.
- ICML-2019-CaiLS #analysis #normalisation
- A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent (YC, QL, ZS), pp. 882–890.
- ICML-2019-CanGZ #convergence #linear #probability
- Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances (BC, MG, LZ), pp. 891–901.
- ICML-2019-CanalMDR
- Active Embedding Search via Noisy Paired Comparisons (GC, AKM, MAD, CJR), pp. 902–911.
- ICML-2019-CaoS #learning #multi #problem
- Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem (JC, WS), pp. 912–920.
- ICML-2019-CardosoAWX #game studies #nash
- Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games (ARC, JDA, HW, HX), pp. 921–930.
- ICML-2019-ChaiTOG #automation
- Automated Model Selection with Bayesian Quadrature (HC, JFT, MAO, RG), pp. 931–940.
- ICML-2019-ChandakTKJT #learning
- Learning Action Representations for Reinforcement Learning (YC, GT, JK, SMJ, PST), pp. 941–950.
- ICML-2019-ChangMG #metric #scheduling #using
- Dynamic Measurement Scheduling for Event Forecasting using Deep RL (CHC, MM, AG), pp. 951–960.
- ICML-2019-CharoenphakdeeL #learning #on the #symmetry
- On Symmetric Losses for Learning from Corrupted Labels (NC, JL, MS), pp. 961–970.
- ICML-2019-ChatterjiPB #kernel #learning #online
- Online learning with kernel losses (NSC, AP, PLB), pp. 971–980.
- ICML-2019-ChattopadhyayMS #network #perspective
- Neural Network Attributions: A Causal Perspective (AC, PM, AS, VNB), pp. 981–990.
- ICML-2019-ChaudhuriK #identification #multi #probability
- PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits (ARC, SK), pp. 991–1000.
- ICML-2019-Chen #analysis #bound #consistency #fault #kernel #nearest neighbour
- Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates (GHC), pp. 1001–1010.
- ICML-2019-ChenBBGGMO #markov #monte carlo
- Stein Point Markov Chain Monte Carlo (WYC, AB, FXB, JG, MAG, LWM, CJO), pp. 1011–1021.
- ICML-2019-ChenDS
- Particle Flow Bayes' Rule (XC, HD, LS), pp. 1022–1031.
- ICML-2019-ChenFLM #clustering
- Proportionally Fair Clustering (XC, BF, LL, KM), pp. 1032–1041.
- ICML-2019-ChenJ #learning
- Information-Theoretic Considerations in Batch Reinforcement Learning (JC, NJ), pp. 1042–1051.
- ICML-2019-Chen0LJQS #generative #learning #recommendation
- Generative Adversarial User Model for Reinforcement Learning Based Recommendation System (XC, SL0, HL, SJ, YQ, LS), pp. 1052–1061.
- ICML-2019-ChenLCZ #comprehension #network
- Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels (PC, BL, GC, SZ), pp. 1062–1070.
- ICML-2019-ChenTZB00 #approach #generative #network
- A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization (YC, MT, CZ, BB, DH0, JP0), pp. 1071–1080.
- ICML-2019-ChenWLW #adaptation
- Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation (XC, SW, ML, JW0), pp. 1081–1090.
- ICML-2019-ChenW0R #algorithm #graph #incremental #performance
- Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications (PYC, LW, SL0, IR), pp. 1091–1101.
- ICML-2019-ChenXHY #named #problem #scalability
- Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ZC, YX, HH, TY), pp. 1102–1111.
- ICML-2019-ChenYWLYLL #multi #scalability
- Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching (ZC, ZY, XW, XL, XY, GL, LL), pp. 1112–1121.
- ICML-2019-ChenZBH #robust
- Robust Decision Trees Against Adversarial Examples (HC, HZ0, DSB, CJH), pp. 1122–1131.
- ICML-2019-ChenZWMH #named
- RaFM: Rank-Aware Factorization Machines (XC, YZ, JW, WM, JH), pp. 1132–1140.
- ICML-2019-ChengVOCYB #learning
- Control Regularization for Reduced Variance Reinforcement Learning (RC, AV, GO, SC, YY, JB), pp. 1141–1150.
- ICML-2019-ChengYRB #optimisation #policy #predict
- Predictor-Corrector Policy Optimization (CAC, XY, NDR, BB), pp. 1151–1161.
- ICML-2019-ChiquetRM #network #re-engineering
- Variational Inference for sparse network reconstruction from count data (JC, SR, MM), pp. 1162–1171.
- ICML-2019-ChitraR #random
- Random Walks on Hypergraphs with Edge-Dependent Vertex Weights (UC, BJR), pp. 1172–1181.
- ICML-2019-ChoiTGWE
- Neural Joint Source-Channel Coding (KC, KT, AG, TW, SE), pp. 1182–1192.
- ICML-2019-ChoromanskaCKLR #online
- Beyond Backprop: Online Alternating Minimization with Auxiliary Variables (AC, BC, SK, RL, MR, IR, PD, VG, BK, RT, DB0), pp. 1193–1202.
- ICML-2019-ChoromanskiRCW #monte carlo #orthogonal
- Unifying Orthogonal Monte Carlo Methods (KC, MR, WC, AW), pp. 1203–1212.
- ICML-2019-ChuBG #functional #learning #probability
- Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning (CC, JHB, PWG), pp. 1213–1222.
- ICML-2019-ChuL #multi #named #summary
- MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization (EC, PJL), pp. 1223–1232.
- ICML-2019-ChungL #detection
- Weak Detection of Signal in the Spiked Wigner Model (HWC, JOL), pp. 1233–1241.
- ICML-2019-CicaleseLM #clustering
- New results on information theoretic clustering (FC, ESL, LM), pp. 1242–1251.
- ICML-2019-CinelliKCPB #analysis #linear #modelling
- Sensitivity Analysis of Linear Structural Causal Models (CC, DK, BC, JP, EB), pp. 1252–1261.
- ICML-2019-ClarksonWW #reduction
- Dimensionality Reduction for Tukey Regression (KLC, RW, DPW), pp. 1262–1271.
- ICML-2019-ClemenconLB #on the #random
- On Medians of (Randomized) Pairwise Means (SC, PL, PB), pp. 1272–1281.
- ICML-2019-CobbeKHKS #learning
- Quantifying Generalization in Reinforcement Learning (KC, OK, CH, TK, JS), pp. 1282–1289.
- ICML-2019-CohenB #analysis #empirical #modelling #performance #sequence
- Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models (EC, JCB), pp. 1290–1299.
- ICML-2019-CohenKM #learning
- Learning Linear-Quadratic Regulators Efficiently with only √T Regret (AC, TK, YM), pp. 1300–1309.
- ICML-2019-CohenRK #random #robust
- Certified Adversarial Robustness via Randomized Smoothing (JMC, ER, JZK), pp. 1310–1320.
- ICML-2019-CohenWKW #network
- Gauge Equivariant Convolutional Networks and the Icosahedral CNN (TC, MW, BK, MW), pp. 1321–1330.
- ICML-2019-ColasOSFC #composition #learning #motivation #multi #named
- CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning (CC, PYO, OS, PF, MC), pp. 1331–1340.
- ICML-2019-CollobertHS
- A fully differentiable beam search decoder (RC, AH, GS), pp. 1341–1350.
- ICML-2019-CornishVBDD #dataset #scalability
- Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets (RC, PV, ABC, GD, AD), pp. 1351–1360.
- ICML-2019-Correa0B
- Adjustment Criteria for Generalizing Experimental Findings (JDC, JT0, EB), pp. 1361–1369.
- ICML-2019-CortesDGMY #feedback #graph #learning #online
- Online Learning with Sleeping Experts and Feedback Graphs (CC, GD, CG, MM, SY), pp. 1370–1378.
- ICML-2019-CortesDMZG #graph #learning
- Active Learning with Disagreement Graphs (CC, GD, MM, NZ, CG), pp. 1379–1387.
- ICML-2019-CotterGJLMNWZ #constraints #set
- Shape Constraints for Set Functions (AC, MRG, HJ, EL, JM, TN, SW, TZ), pp. 1388–1396.
- ICML-2019-CotterGJSSWWY #classification #constraints #metric
- Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints (AC, MRG, HJ, NS, KS, SW, BEW, SY), pp. 1397–1405.
- ICML-2019-CrankoMNOSW
- Monge blunts Bayes: Hardness Results for Adversarial Training (ZC, AKM, RN, CSO, ZS, CJW), pp. 1406–1415.
- ICML-2019-CrankoN #estimation
- Boosted Density Estimation Remastered (ZC, RN), pp. 1416–1425.
- ICML-2019-CrawfordKT #approximate
- Submodular Cost Submodular Cover with an Approximate Oracle (VGC, AK, MTT), pp. 1426–1435.
- ICML-2019-CreagerMJWSPZ #learning #representation
- Flexibly Fair Representation Learning by Disentanglement (EC, DM, JHJ, MAW, KS, TP, RSZ), pp. 1436–1445.
- ICML-2019-Cutkosky
- Anytime Online-to-Batch, Optimism and Acceleration (AC), pp. 1446–1454.
- ICML-2019-CutkoskyS #learning #online
- Matrix-Free Preconditioning in Online Learning (AC, TS), pp. 1455–1464.
- ICML-2019-CvitkovicK #learning #statistics
- Minimal Achievable Sufficient Statistic Learning (MC, GK), pp. 1465–1474.
- ICML-2019-CvitkovicSA #learning #source code
- Open Vocabulary Learning on Source Code with a Graph-Structured Cache (MC, BS, AA), pp. 1475–1485.
- ICML-2019-DadashiBTRS #learning
- The Value Function Polytope in Reinforcement Learning (RD, MGB, AAT, NLR, DS), pp. 1486–1495.
- ICML-2019-DaiYLJ #optimisation
- Bayesian Optimization Meets Bayesian Optimal Stopping (ZD, HY, BKHL, PJ), pp. 1496–1506.
- ICML-2019-Dann0WB #learning #policy #towards
- Policy Certificates: Towards Accountable Reinforcement Learning (CD, LL0, WW, EB), pp. 1507–1516.
- ICML-2019-DaoGERR #algorithm #learning #linear #performance #using
- Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations (TD, AG, ME, AR, CR), pp. 1517–1527.
- ICML-2019-DaoGRSSR #kernel
- A Kernel Theory of Modern Data Augmentation (TD, AG, AR, VS, CDS, CR), pp. 1528–1537.
- ICML-2019-DasGRBPRP #communication #multi #named
- TarMAC: Targeted Multi-Agent Communication (AD, TG, JR, DB, DP, MR, JP), pp. 1538–1546.
- ICML-2019-Dasgupta0PZ #black box #education
- Teaching a black-box learner (SD, DH0, SP, XZ0), pp. 1547–1555.
- ICML-2019-BiePC #network #probability
- Stochastic Deep Networks (GdB, GP, MC), pp. 1556–1565.
- ICML-2019-DeneviCGP #probability
- Learning-to-Learn Stochastic Gradient Descent with Biased Regularization (GD, CC, RG, MP), pp. 1566–1575.
- ICML-2019-DereliOG #algorithm #analysis #biology #kernel #learning #multi
- A Multitask Multiple Kernel Learning Algorithm for Survival Analysis with Application to Cancer Biology (OD, CO, MG), pp. 1576–1585.
- ICML-2019-DiaconuW #approach #learning
- Learning to Convolve: A Generalized Weight-Tying Approach (ND, DEW), pp. 1586–1595.
- ICML-2019-DiakonikolasKK0 #named #optimisation #probability #robust
- Sever: A Robust Meta-Algorithm for Stochastic Optimization (ID, GK0, DK, JL0, JS, AS), pp. 1596–1606.
- ICML-2019-DingDGHY #approximate #optimisation
- Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (XD, GD, YG, JH, CY), pp. 1607–1616.
- ICML-2019-DingZDYRTV #component
- Noisy Dual Principal Component Pursuit (TD, ZZ, TD, YY, DPR, MCT, RV), pp. 1617–1625.
- ICML-2019-DoanMR #analysis #approximate #distributed #finite #learning #linear #multi
- Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning (TTD, STM, JR), pp. 1626–1635.
- ICML-2019-DoerrVTTD #learning
- Trajectory-Based Off-Policy Deep Reinforcement Learning (AD, MV, MT, ST, CD), pp. 1636–1645.
- ICML-2019-Dohmatob #robust #theorem
- Generalized No Free Lunch Theorem for Adversarial Robustness (ED), pp. 1646–1654.
- ICML-2019-DuH #linear #matter #network #optimisation
- Width Provably Matters in Optimization for Deep Linear Neural Networks (SSD, WH), pp. 1655–1664.
- ICML-2019-DuKJAD0 #performance
- Provably efficient RL with Rich Observations via Latent State Decoding (SSD, AK, NJ, AA, MD, JL0), pp. 1665–1674.
- ICML-2019-DuLL0Z #network
- Gradient Descent Finds Global Minima of Deep Neural Networks (SSD, JDL, HL, LW0, XZ), pp. 1675–1685.
- ICML-2019-DuL
- Incorporating Grouping Information into Bayesian Decision Tree Ensembles (JD, ARL), pp. 1686–1695.
- ICML-2019-DuN #learning
- Task-Agnostic Dynamics Priors for Deep Reinforcement Learning (YD, KN), pp. 1696–1705.
- ICML-2019-Duetting0NPR #learning
- Optimal Auctions through Deep Learning (PD, ZF0, HN, DCP, SSR), pp. 1706–1715.
- ICML-2019-DuklerLLM #generative #learning #modelling
- Wasserstein of Wasserstein Loss for Learning Generative Models (YD, WL, ATL, GM), pp. 1716–1725.
- ICML-2019-DunckerBBS #learning #modelling #probability
- Learning interpretable continuous-time models of latent stochastic dynamical systems (LD, GB, JB, MS), pp. 1726–1734.
- ICML-2019-DurkanN #energy
- Autoregressive Energy Machines (CD, CN), pp. 1735–1744.
- ICML-2019-DziedzicPKEF #network
- Band-limited Training and Inference for Convolutional Neural Networks (AD, JP, SK, AJE, MJF), pp. 1745–1754.
- ICML-2019-EdwardsSSI #policy
- Imitating Latent Policies from Observation (ADE, HS, YS, CLIJ), pp. 1755–1763.
- ICML-2019-EichnerKMST #probability
- Semi-Cyclic Stochastic Gradient Descent (HE, TK, BM, NS, KT), pp. 1764–1773.
- ICML-2019-ElfekiCRE #learning #named #process #using
- GDPP: Learning Diverse Generations using Determinantal Point Processes (ME, CC, MR, ME), pp. 1774–1783.
- ICML-2019-Elhamifar #algorithm #approximate
- Sequential Facility Location: Approximate Submodularity and Greedy Algorithm (EE), pp. 1784–1793.
- ICML-2019-EneV #convergence
- Improved Convergence for l₁ and l₁ l∞ Regression via Iteratively Reweighted Least Squares (AE, AV), pp. 1794–1801.
- ICML-2019-EngstromTTSM #robust
- Exploring the Landscape of Spatial Robustness (LE, BT, DT, LS, AM), pp. 1802–1811.
- ICML-2019-EstevesSLDM #3d #image
- Cross-Domain 3D Equivariant Image Embeddings (CE, AS, ZL, KD, AM), pp. 1812–1822.
- ICML-2019-EtmannLMS #on the #robust
- On the Connection Between Adversarial Robustness and Saliency Map Interpretability (CE, SL, PM, CS), pp. 1823–1832.
- ICML-2019-FahrbachMZ #adaptation #complexity #query
- Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity (MF, VSM, MZ), pp. 1833–1842.
- ICML-2019-FanZ #multi
- Multi-Frequency Vector Diffusion Maps (YF, ZZ), pp. 1843–1852.
- ICML-2019-FarinaKBS #predict
- Stable-Predictive Optimistic Counterfactual Regret Minimization (GF, CK, NB, TS), pp. 1853–1862.
- ICML-2019-FarinaKS
- Regret Circuits: Composability of Regret Minimizers (GF, CK, TS), pp. 1863–1872.
- ICML-2019-FatemiSSK #learning
- Dead-ends and Secure Exploration in Reinforcement Learning (MF, SS, HvS, SEK), pp. 1873–1881.
- ICML-2019-Feige #invariant #learning #multi #representation
- Invariant-Equivariant Representation Learning for Multi-Class Data (IF), pp. 1882–1891.
- ICML-2019-FeldmanFH #multi #reuse #testing
- The advantages of multiple classes for reducing overfitting from test set reuse (VF, RF, MH), pp. 1892–1900.
- ICML-2019-FeraudAL #distributed #multi
- Decentralized Exploration in Multi-Armed Bandits (RF, RA, RL), pp. 1901–1909.
- ICML-2019-FercoqANC #optimisation
- Almost surely constrained convex optimization (OF, AA, IN, VC), pp. 1910–1919.
- ICML-2019-FinnRKL #online
- Online Meta-Learning (CF, AR, SMK, SL), pp. 1920–1930.
- ICML-2019-FischerBDGZV #logic #named #network #query
- DL2: Training and Querying Neural Networks with Logic (MF, MB, DDC, TG, CZ, MTV), pp. 1931–1941.
- ICML-2019-FoersterSHBDWBB #learning #multi
- Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning (JNF, HFS, EH, NB, ID, SW, MB, MB), pp. 1942–1951.
- ICML-2019-FongLH #multimodal #parametricity #scalability
- Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap (EF, SL, CCH), pp. 1952–1962.
- ICML-2019-FrancP #learning #nondeterminism #on the #predict
- On discriminative learning of prediction uncertainty (VF, DP), pp. 1963–1971.
- ICML-2019-FranceschiNPH #graph #learning #network
- Learning Discrete Structures for Graph Neural Networks (LF, MN, MP, XH), pp. 1972–1982.
- ICML-2019-FreirichSMT #evaluation #multi #policy
- Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN (DF, TS, RM, AT), pp. 1983–1992.
- ICML-2019-FrerixB #approximate #effectiveness #matrix #orthogonal
- Approximating Orthogonal Matrices with Effective Givens Factorization (TF, JB), pp. 1993–2001.
- ICML-2019-FrognerP #flexibility #performance
- Fast and Flexible Inference of Joint Distributions from their Marginals (CF, TAP), pp. 2002–2011.
- ICML-2019-FrosstPH #nearest neighbour
- Analyzing and Improving Representations with the Soft Nearest Neighbor Loss (NF, NP, GEH), pp. 2012–2020.
- ICML-2019-FuKSL #algorithm
- Diagnosing Bottlenecks in Deep Q-learning Algorithms (JF, AK, MS, SL), pp. 2021–2030.
- ICML-2019-FuLTL #black box #generative #metric #named #network #optimisation #speech
- MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement (SWF, CFL, YT0, SDL), pp. 2031–2041.
- ICML-2019-FujiiS #adaptation #approximate #policy
- Beyond Adaptive Submodularity: Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio (KF, SS), pp. 2042–2051.
- ICML-2019-FujimotoMP #learning
- Off-Policy Deep Reinforcement Learning without Exploration (SF, DM, DP), pp. 2052–2062.
- ICML-2019-GamrianG #learning
- Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (SG, YG), pp. 2063–2072.
- ICML-2019-GaneaGBS
- Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities (OG, SG, GB, AS), pp. 2073–2082.
- ICML-2019-GaoJ #graph
- Graph U-Nets (HG, SJ), pp. 2083–2092.
- ICML-2019-GaoJWWYZ #generative #learning
- Deep Generative Learning via Variational Gradient Flow (YG, YJ, YW, YW0, CY, SZ), pp. 2093–2101.
- ICML-2019-GaoL0O #theory and practice
- Rate Distortion For Model Compression: From Theory To Practice (WG, YHL, CW0, SO), pp. 2102–2111.
- ICML-2019-GaoPH
- Demystifying Dropout (HG, JP, HH), pp. 2112–2121.
- ICML-2019-GaoWH #data analysis #geometry #graph
- Geometric Scattering for Graph Data Analysis (FG, GW, MJH), pp. 2122–2131.
- ICML-2019-GaoZ #multi
- Multi-Frequency Phase Synchronization (TG, ZZ), pp. 2132–2141.
- ICML-2019-GazagnadouGS
- Optimal Mini-Batch and Step Sizes for SAGA (NG, RMG, JS), pp. 2142–2150.
- ICML-2019-GeifmanE #named #network
- SelectiveNet: A Deep Neural Network with an Integrated Reject Option (YG, REY), pp. 2151–2159.
- ICML-2019-GeistSP #formal method #markov #process
- A Theory of Regularized Markov Decision Processes (MG, BS, OP), pp. 2160–2169.
- ICML-2019-GeladaKBNB #learning #modelling #named #representation
- DeepMDP: Learning Continuous Latent Space Models for Representation Learning (CG, SK, JB, ON, MGB), pp. 2170–2179.
- ICML-2019-GengYKK #linear #modelling #visual notation
- Partially Linear Additive Gaussian Graphical Models (SG, MY, MK, SK), pp. 2180–2190.
- ICML-2019-GhadikolaeiGFS #big data #dataset #learning
- Learning and Data Selection in Big Datasets (HSG, HGG, CF, MS), pp. 2191–2200.
- ICML-2019-GhaffariLM #algorithm #clustering #network #parallel
- Improved Parallel Algorithms for Density-Based Network Clustering (MG, SL, SM), pp. 2201–2210.
- ICML-2019-GhaziPW #composition #learning #recursion #sketching
- Recursive Sketches for Modular Deep Learning (BG, RP, JRW), pp. 2211–2220.
- ICML-2019-GhorbaniJM #modelling #topic
- An Instability in Variational Inference for Topic Models (BG, HJ, AM), pp. 2221–2231.
- ICML-2019-GhorbaniKX #optimisation
- An Investigation into Neural Net Optimization via Hessian Eigenvalue Density (BG, SK, YX), pp. 2232–2241.
- ICML-2019-GhorbaniZ #machine learning
- Data Shapley: Equitable Valuation of Data for Machine Learning (AG, JYZ), pp. 2242–2251.
- ICML-2019-GilboaB0 #learning #performance #taxonomy
- Efficient Dictionary Learning with Gradient Descent (DG, SB, JW0), pp. 2252–2259.
- ICML-2019-GillenwaterKMV #performance #process
- A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes (JG, AK, ZM, SV), pp. 2260–2268.
- ICML-2019-GillickREEB #learning #sequence
- Learning to Groove with Inverse Sequence Transformations (JG, AR, JHE, DE, DB), pp. 2269–2279.
- ICML-2019-GilmerFCC #fault
- Adversarial Examples Are a Natural Consequence of Test Error in Noise (JG, NF, NC, EDC), pp. 2280–2289.
- ICML-2019-GimenezZ #statistics
- Discovering Conditionally Salient Features with Statistical Guarantees (JRG, JYZ), pp. 2290–2298.
- ICML-2019-GoldfeldBGMNKP #data flow #network
- Estimating Information Flow in Deep Neural Networks (ZG, EvdB, KHG, IM, NN, BK, YP), pp. 2299–2308.
- ICML-2019-GolinskiWR #integration #monte carlo
- Amortized Monte Carlo Integration (AG, FW, TR), pp. 2309–2318.
- ICML-2019-GollapudiP #algorithm #online
- Online Algorithms for Rent-Or-Buy with Expert Advice (SG, DP), pp. 2319–2327.
- ICML-2019-GolovnevPS #learning
- The information-theoretic value of unlabeled data in semi-supervised learning (AG, DP, BS), pp. 2328–2336.
- ICML-2019-GongHLQWL #performance
- Efficient Training of BERT by Progressively Stacking (LG, DH, ZL, TQ, LW0, TYL), pp. 2337–2346.
- ICML-2019-Gong0L #optimisation
- Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization (CG, JP0, QL0), pp. 2347–2356.
- ICML-2019-GordalizaBGL #using
- Obtaining Fairness using Optimal Transport Theory (PG, EdB, FG, JML), pp. 2357–2365.
- ICML-2019-GottesmanLSBD #evaluation #modelling #parametricity
- Combining parametric and nonparametric models for off-policy evaluation (OG, YL0, SS, EB, FDV), pp. 2366–2375.
- ICML-2019-GoyalWEBPL #visual notation
- Counterfactual Visual Explanations (YG, ZW, JE, DB, DP, SL), pp. 2376–2384.
- ICML-2019-GrantBGLVC #adaptation
- Adaptive Sensor Placement for Continuous Spaces (JAG, AB, RRG, DSL, SV, EMdC), pp. 2385–2393.
- ICML-2019-Greaves-Tunnell #memory management #music #statistics
- A Statistical Investigation of Long Memory in Language and Music (AGT, ZH), pp. 2394–2403.
- ICML-2019-GreenbergNM #automation
- Automatic Posterior Transformation for Likelihood-Free Inference (DSG, MN, JHM), pp. 2404–2414.
- ICML-2019-GreenfeldGBYK #learning #multi
- Learning to Optimize Multigrid PDE Solvers (DG, MG, RB, IY, RK), pp. 2415–2423.
- ICML-2019-GreffKKWBZMBL #learning #multi #representation
- Multi-Object Representation Learning with Iterative Variational Inference (KG, RLK, RK, NW, CB, DZ, LM, MB, AL), pp. 2424–2433.
- ICML-2019-GroverZE #generative #graph #modelling #named
- Graphite: Iterative Generative Modeling of Graphs (AG, AZ, SE), pp. 2434–2444.
- ICML-2019-GuY #algorithm #modelling #multi #performance #ranking
- Fast Algorithm for Generalized Multinomial Models with Ranking Data (JG, GY), pp. 2445–2453.
- ICML-2019-GuanWZCH0 #comprehension #modelling #towards
- Towards a Deep and Unified Understanding of Deep Neural Models in NLP (CG, XW, QZ, RC, DH, XX0), pp. 2454–2463.
- ICML-2019-GuezMGKRWRSOEWS
- An Investigation of Model-Free Planning (AG, MM, KG, RK, SR, TW, DR, AS, LO, TE, GW, DS, TPL), pp. 2464–2473.
- ICML-2019-GultchinPBSK #word
- Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops (LG, GP, NB, NS, AK), pp. 2474–2483.
- ICML-2019-GuoGYWW #black box
- Simple Black-box Adversarial Attacks (CG, JRG, YY, AGW, KQW), pp. 2484–2493.
- ICML-2019-0002LA #multi #network
- Exploring interpretable LSTM neural networks over multi-variable data (TG0, TL, NAF), pp. 2494–2504.
- ICML-2019-GuoSH #dependence #graph #learning #relational
- Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs (LG, ZS, WH0), pp. 2505–2514.
- ICML-2019-GuralM #classification #embedded
- Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Applications (AG, BM), pp. 2515–2524.
- ICML-2019-HaberLTR #network
- IMEXnet A Forward Stable Deep Neural Network (EH, KL, ET, LR), pp. 2525–2534.
- ICML-2019-HacohenW #education #learning #network #on the #power of
- On The Power of Curriculum Learning in Training Deep Networks (GH, DW), pp. 2535–2544.
- ICML-2019-HaddadpourKMC #communication #distributed #optimisation
- Trading Redundancy for Communication: Speeding up Distributed SGD for Non-convex Optimization (FH, MMK, MM, VRC), pp. 2545–2554.
- ICML-2019-HafnerLFVHLD #learning
- Learning Latent Dynamics for Planning from Pixels (DH, TPL, IF, RV, DH, HL, JD), pp. 2555–2565.
- ICML-2019-HalperinEH
- Neural Separation of Observed and Unobserved Distributions (TH, AE, YH), pp. 2566–2575.
- ICML-2019-HanSDXWSLZ #game studies #learning #multi #video
- Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI (LH, PS, YD, JX, QW, XS, HL, TZ), pp. 2576–2585.
- ICML-2019-HanS #learning
- Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning (SH, YS), pp. 2586–2595.
- ICML-2019-HaninR #complexity #linear #network
- Complexity of Linear Regions in Deep Networks (BH, DR), pp. 2596–2604.
- ICML-2019-HannaNS #behaviour #evaluation #policy
- Importance Sampling Policy Evaluation with an Estimated Behavior Policy (JH, SN, PS), pp. 2605–2613.
- ICML-2019-HaoO #estimation
- Doubly-Competitive Distribution Estimation (YH, AO), pp. 2614–2623.
- ICML-2019-HaochenS #finite #random
- Random Shuffling Beats SGD after Finite Epochs (JH, SS), pp. 2624–2633.
- ICML-2019-HarshawFWK #algorithm #performance
- Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications (CH, MF, JW, AK), pp. 2634–2643.
- ICML-2019-HarutyunyanVHNP
- Per-Decision Option Discounting (AH, PV, PH, AN, DP), pp. 2644–2652.
- ICML-2019-HashemiGVT #information management #modelling #polynomial
- Submodular Observation Selection and Information Gathering for Quadratic Models (AH, MG, HV, UT), pp. 2653–2662.
- ICML-2019-HavivRB #comprehension #memory management #network
- Understanding and Controlling Memory in Recurrent Neural Networks (DH, AR, OB), pp. 2663–2671.
- ICML-2019-HayouDR #network #on the
- On the Impact of the Activation function on Deep Neural Networks Training (SH, AD, JR), pp. 2672–2680.
- ICML-2019-HazanKSS #performance
- Provably Efficient Maximum Entropy Exploration (EH, SMK, KS, AVS), pp. 2681–2691.
- ICML-2019-HeidariNG #algorithm #learning #on the #policy #social
- On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning (HH, VN, KPG), pp. 2692–2701.
- ICML-2019-HendrickxOS #graph #learning
- Graph Resistance and Learning from Pairwise Comparisons (JMH, AO, VS), pp. 2702–2711.
- ICML-2019-HendrycksLM #nondeterminism #robust #using
- Using Pre-Training Can Improve Model Robustness and Uncertainty (DH, KL, MM), pp. 2712–2721.
- ICML-2019-HoCSDA #architecture #design #generative #modelling
- Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design (JH, XC0, AS, YD, PA), pp. 2722–2730.
- ICML-2019-HoLCSA #learning #performance #policy
- Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules (DH, EL, XC0, IS, PA), pp. 2731–2741.
- ICML-2019-HoangHLK #black box #multi
- Collective Model Fusion for Multiple Black-Box Experts (QMH, TNH, BKHL, CK), pp. 2742–2750.
- ICML-2019-HoferKND #learning #persistent #representation
- Connectivity-Optimized Representation Learning via Persistent Homology (CDH, RK, MN, MD), pp. 2751–2760.
- ICML-2019-HollandI #robust #using
- Better generalization with less data using robust gradient descent (MJH, KI), pp. 2761–2770.
- ICML-2019-HoogeboomBW #generative #normalisation
- Emerging Convolutions for Generative Normalizing Flows (EH, RvdB, MW), pp. 2771–2780.
- ICML-2019-HorvathR #optimisation
- Nonconvex Variance Reduced Optimization with Arbitrary Sampling (SH, PR), pp. 2781–2789.
- ICML-2019-HoulsbyGJMLGAG #learning
- Parameter-Efficient Transfer Learning for NLP (NH, AG, SJ, BM, QdL, AG, MA, SG), pp. 2790–2799.
- ICML-2019-HsiehLBK #linear
- Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging (PCH, XL0, AB, PRK), pp. 2800–2809.
- ICML-2019-HsiehLC #generative #nash #network
- Finding Mixed Nash Equilibria of Generative Adversarial Networks (YPH, CL, VC), pp. 2810–2819.
- ICML-2019-HsiehNS #classification
- Classification from Positive, Unlabeled and Biased Negative Data (YGH, GN, MS), pp. 2820–2829.
- ICML-2019-HsuR #kernel
- Bayesian Deconditional Kernel Mean Embeddings (KH, FR), pp. 2830–2838.
- ICML-2019-HuangCH #multi #optimisation #performance #probability
- Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization (FH, SC, HH), pp. 2839–2848.
- ICML-2019-HuangDGZ #learning
- Unsupervised Deep Learning by Neighbourhood Discovery (JH, QD0, SG, XZ), pp. 2849–2858.
- ICML-2019-Huang0 #algorithm #community #correlation #detection
- Detecting Overlapping and Correlated Communities without Pure Nodes: Identifiability and Algorithm (KH, XF0), pp. 2859–2868.
- ICML-2019-HuangSDLC
- Hierarchical Importance Weighted Autoencoders (CWH, KS, ED, AL, ACC), pp. 2869–2878.
- ICML-2019-HuangV #classification
- Stable and Fair Classification (LH, NKV), pp. 2879–2890.
- ICML-2019-HuangZTMSGS #adaptation
- Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment (CH, SZ, WT, MÁB0, SYS, CG, JMS), pp. 2891–2900.
- ICML-2019-Huang0GG #modelling
- Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models (BH, KZ0, MG, CG), pp. 2901–2910.
- ICML-2019-HuntBLH #policy #using
- Composing Entropic Policies using Divergence Correction (JJH, AB, TPL, NH), pp. 2911–2920.
- ICML-2019-HwangJY #classification #generative #named
- HexaGAN: Generative Adversarial Nets for Real World Classification (UH, DJ, SY), pp. 2921–2930.
- ICML-2019-IalongoWHR #approximate #modelling #process
- Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models (ADI, MvdW, JH, CER), pp. 2931–2940.
- ICML-2019-InnesL #learning #problem
- Learning Structured Decision Problems with Unawareness (CI, AL), pp. 2941–2950.
- ICML-2019-IpsenH #exclamation
- Phase transition in PCA with missing data: Reduced signal-to-noise ratio, not sample size! (NBI, LKH), pp. 2951–2960.
- ICML-2019-IqbalS #learning #multi
- Actor-Attention-Critic for Multi-Agent Reinforcement Learning (SI, FS), pp. 2961–2970.
- ICML-2019-IshidaNMS #learning #modelling
- Complementary-Label Learning for Arbitrary Losses and Models (TI, GN, AKM, MS), pp. 2971–2980.
- ICML-2019-JaberZB #equivalence #identification #markov
- Causal Identification under Markov Equivalence: Completeness Results (AJ, JZ, EB), pp. 2981–2989.
- ICML-2019-JacqGPP #learning
- Learning from a Learner (AJ, MG, AP, OP), pp. 2990–2999.
- ICML-2019-JagielskiKMORSU #learning
- Differentially Private Fair Learning (MJ, MJK, JM, AO, AR0, SSM, JU), pp. 3000–3008.
- ICML-2019-JainiSY #polynomial
- Sum-of-Squares Polynomial Flow (PJ, KAS, YY), pp. 3009–3018.
- ICML-2019-JangJ #clustering #performance #scalability #towards
- DBSCAN++: Towards fast and scalable density clustering (JJ, HJ), pp. 3019–3029.
- ICML-2019-JangLHS #learning #what
- Learning What and Where to Transfer (YJ, HL, SJH, JS), pp. 3030–3039.
- ICML-2019-JaquesLHGOSLF #learning #motivation #multi #social
- Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning (NJ, AL, EH, ÇG, PAO, DS, JZL, NdF), pp. 3040–3049.
- ICML-2019-JayRGST #internet #learning
- A Deep Reinforcement Learning Perspective on Internet Congestion Control (NJ, NHR, BG, MS, AT), pp. 3050–3059.
- ICML-2019-JeongKKN #graph #modelling #music #network #performance
- Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance (DJ, TK, YK, JN), pp. 3060–3070.
- ICML-2019-JeongLK #network
- Ladder Capsule Network (TJ, YL, HK), pp. 3071–3079.
- ICML-2019-JeongS
- Training CNNs with Selective Allocation of Channels (JJ, JS), pp. 3080–3090.
- ICML-2019-JeongS19a #learning
- Learning Discrete and Continuous Factors of Data via Alternating Disentanglement (YJ, HOS), pp. 3091–3099.
- ICML-2019-JiWZL #algorithm #analysis #optimisation
- Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization (KJ, ZW, YZ, YL), pp. 3100–3109.
- ICML-2019-JiangL #learning #logic
- Neural Logic Reinforcement Learning (ZJ, SL), pp. 3110–3119.
- ICML-2019-JinnaiAHLK
- Finding Options that Minimize Planning Time (YJ, DA, DEH, MLL, GDK), pp. 3120–3129.
- ICML-2019-JinnaiPAK
- Discovering Options for Exploration by Minimizing Cover Time (YJ, JWP, DA, GDK), pp. 3130–3139.
- ICML-2019-JitkrittumSGRHS #kernel
- Kernel Mean Matching for Content Addressability of GANs (WJ, PS, MWG, AR, JH, BS), pp. 3140–3151.
- ICML-2019-JohnHS #difference #equation #named #off the shelf
- GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver (DJ, VH, MS), pp. 3152–3162.
- ICML-2019-JunWWN #rank
- Bilinear Bandits with Low-rank Structure (KSJ, RW, SW, RDN), pp. 3163–3172.
- ICML-2019-KahngLNPP #statistics
- Statistical Foundations of Virtual Democracy (AK, MKL, RN, ADP, CAP), pp. 3173–3182.
- ICML-2019-Kajino #graph grammar #optimisation
- Molecular Hypergraph Grammar with Its Application to Molecular Optimization (HK), pp. 3183–3191.
- ICML-2019-KalimerisKS #modelling #robust
- Robust Influence Maximization for Hyperparametric Models (DK, GK, YS), pp. 3192–3200.
- ICML-2019-Kallus
- Classifying Treatment Responders Under Causal Effect Monotonicity (NK), pp. 3201–3210.
- ICML-2019-KalyanALB #modelling #sequence #set
- Trainable Decoding of Sets of Sequences for Neural Sequence Models (AK, PA, SL, DB), pp. 3211–3221.
- ICML-2019-KandasamyNZKSP #adaptation #design
- Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments (KK, WN, RZ, AK, JS, BP), pp. 3222–3232.
- ICML-2019-KaplanMMS #concept #geometry #learning
- Differentially Private Learning of Geometric Concepts (HK, YM, YM, US), pp. 3233–3241.
- ICML-2019-KaplanisSC #learning #policy
- Policy Consolidation for Continual Reinforcement Learning (CK, MS, CC), pp. 3242–3251.
- ICML-2019-KarimireddyRSJ #fault #feedback
- Error Feedback Fixes SignSGD and other Gradient Compression Schemes (SPK, QR, SUS, MJ), pp. 3252–3261.
- ICML-2019-KasaiJM #adaptation #algorithm #matrix #probability
- Riemannian adaptive stochastic gradient algorithms on matrix manifolds (HK, PJ, BM), pp. 3262–3271.
- ICML-2019-KasparOMKM #image
- Neural Inverse Knitting: From Images to Manufacturing Instructions (AK, THO, LM, PK, WM), pp. 3272–3281.
- ICML-2019-KatharopoulosF #image #modelling
- Processing Megapixel Images with Deep Attention-Sampling Models (AK, FF), pp. 3282–3291.
- ICML-2019-KatiyarHC #estimation #modelling #robust #visual notation
- Robust Estimation of Tree Structured Gaussian Graphical Models (AK, JH, CC), pp. 3292–3300.
- ICML-2019-KayaHD #comprehension #network
- Shallow-Deep Networks: Understanding and Mitigating Network Overthinking (YK, SH, TD), pp. 3301–3310.
- ICML-2019-0001MZLK #adaptation #approximate #complexity #memory management #streaming
- Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity (EK0, MM, MZ, SL, AK), pp. 3311–3320.
- ICML-2019-KempkaKW #adaptation #algorithm #invariant #learning #linear #modelling #online
- Adaptive Scale-Invariant Online Algorithms for Learning Linear Models (MK, WK, MKW), pp. 3321–3330.
- ICML-2019-KenterWCCV #named #network #speech #synthesis
- CHiVE: Varying Prosody in Speech Synthesis with a Linguistically Driven Dynamic Hierarchical Conditional Variational Network (TK, VW, CaC, RC, JV), pp. 3331–3340.
- ICML-2019-KhadkaMNDTMLT #collaboration #learning
- Collaborative Evolutionary Reinforcement Learning (SK, SM, TN, ZD, ET, SM, YL, KT), pp. 3341–3350.
- ICML-2019-KhasanovaF #geometry #image #representation
- Geometry Aware Convolutional Filters for Omnidirectional Images Representation (RK, PF), pp. 3351–3359.
- ICML-2019-KimKJLS #named
- EMI: Exploration with Mutual Information (HK, JK, YJ, SL, HOS), pp. 3360–3369.
- ICML-2019-KimLSKY #generative
- FloWaveNet : A Generative Flow for Raw Audio (SK, SgL, JS, JK, SY), pp. 3370–3378.
- ICML-2019-KimNKKK #named
- Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty (YK, WN, HK, JHK, GK), pp. 3379–3388.
- ICML-2019-KimP #algorithm #multi
- Contextual Multi-armed Bandit Algorithm for Semiparametric Reward Model (GSK, MCP), pp. 3389–3397.
- ICML-2019-KimSRW #adaptation #convergence #kernel
- Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension (JK, JS, AR, LAW), pp. 3398–3407.
- ICML-2019-KingmaAH #named #recursion
- Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables (FHK, PA, JH), pp. 3408–3417.
- ICML-2019-KipfLDZSGKB #composition #execution #learning #named
- CompILE: Compositional Imitation Learning and Execution (TK, YL, HD, VFZ, ASG, EG, PK, PWB), pp. 3418–3428.
- ICML-2019-KirschnerMHI0 #adaptation #optimisation
- Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces (JK, MM, NH, RI, AK0), pp. 3429–3438.
- ICML-2019-KleimanP #machine learning #metric #modelling #multi #named #performance
- AUCμ: A Performance Metric for Multi-Class Machine Learning Models (RK, DP), pp. 3439–3447.
- ICML-2019-KleindessnerAM #clustering #summary
- Fair k-Center Clustering for Data Summarization (MK, PA, JM), pp. 3448–3457.
- ICML-2019-KleindessnerSAM #clustering #constraints
- Guarantees for Spectral Clustering with Fairness Constraints (MK, SS, PA, JM), pp. 3458–3467.
- ICML-2019-KoLWDWL #named #network #robust
- POPQORN: Quantifying Robustness of Recurrent Neural Networks (CYK, ZL, LW, LD, NW, DL), pp. 3468–3477.
- ICML-2019-KoloskovaSJ #algorithm #communication #distributed #optimisation #probability
- Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication (AK, SUS, MJ), pp. 3478–3487.
- ICML-2019-KonstantinovL #learning #robust
- Robust Learning from Untrusted Sources (NK, CL), pp. 3488–3498.
- ICML-2019-KoolHW #probability #sequence
- Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement (WK, HvH, MW), pp. 3499–3508.
- ICML-2019-KoratanaKBZ #named #representation
- LIT: Learned Intermediate Representation Training for Model Compression (AK, DK, PB, MZ), pp. 3509–3518.
- ICML-2019-Kornblith0LH #network #revisited #similarity
- Similarity of Neural Network Representations Revisited (SK, MN0, HL, GEH), pp. 3519–3529.
- ICML-2019-KroshninTDDGU #approximate #complexity #on the
- On the Complexity of Approximating Wasserstein Barycenters (AK, NT, DD, PED, AG, CAU), pp. 3530–3540.
- ICML-2019-KulunchakovM #optimisation #probability #sequence
- Estimate Sequences for Variance-Reduced Stochastic Composite Optimization (AK, JM), pp. 3541–3550.
- ICML-2019-0001PRW #algorithm #matrix #performance
- Faster Algorithms for Binary Matrix Factorization (RK0, RP, AR, DPW), pp. 3551–3559.
- ICML-2019-KuninBGS #linear
- Loss Landscapes of Regularized Linear Autoencoders (DK, JMB, AG, CS), pp. 3560–3569.
- ICML-2019-KuoLZ0 #geometry #symmetry
- Geometry and Symmetry in Short-and-Sparse Deconvolution (HWK, YL, YZ, JW0), pp. 3570–3580.
- ICML-2019-KurachLZMG #normalisation #scalability
- A Large-Scale Study on Regularization and Normalization in GANs (KK, ML, XZ, MM, SG), pp. 3581–3590.
- ICML-2019-Kusner0LS
- Making Decisions that Reduce Discriminatory Impacts (MJK, CR0, JRL, RS), pp. 3591–3600.
- ICML-2019-KvetonSVWLG #multi
- Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits (BK, CS, SV, ZW, TL, MG), pp. 3601–3610.
- ICML-2019-Labatie #network
- Characterizing Well-Behaved vs. Pathological Deep Neural Networks (AL), pp. 3611–3621.
- ICML-2019-LambBGSMBM #modelling #network
- State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations (AL, JB, AG, SS, IM, YB, MM), pp. 3622–3631.
- ICML-2019-Lamprier
- A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion (SL), pp. 3632–3641.
- ICML-2019-WonXL #learning
- Projection onto Minkowski Sums with Application to Constrained Learning (JHW, JX, KL), pp. 3642–3651.
- ICML-2019-LarocheTC #policy
- Safe Policy Improvement with Baseline Bootstrapping (RL, PT, RTdC), pp. 3652–3661.
- ICML-2019-LattanziS #algorithm
- A Better k-means++ Algorithm via Local Search (SL, CS), pp. 3662–3671.
- ICML-2019-LawLSZ #distance #learning
- Lorentzian Distance Learning for Hyperbolic Representations (MTL, RL, JS, RSZ), pp. 3672–3681.
- ICML-2019-LawrenceEC #dependence #learning #multi #named #parametricity
- DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures (ARL, CHE, NDFC), pp. 3682–3691.
- ICML-2019-X #bound #named #policy #predict #using
- POLITEX: Regret Bounds for Policy Iteration using Expert Prediction, pp. 3692–3702.
- ICML-2019-0002VY #constraints #learning #policy
- Batch Policy Learning under Constraints (HML0, CV, YY), pp. 3703–3712.
- ICML-2019-0002H #learning
- Target-Based Temporal-Difference Learning (DL0, NH), pp. 3713–3722.
- ICML-2019-LeeJAJ #approach #functional #game studies
- Functional Transparency for Structured Data: a Game-Theoretic Approach (GHL, WJ, DAM, TSJ), pp. 3723–3733.
- ICML-2019-LeeLK #graph #self
- Self-Attention Graph Pooling (JL, IL, JK), pp. 3734–3743.
- ICML-2019-LeeLKKCT #framework #invariant #network #set
- Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks (JL, YL, JK, ARK, SC, YWT), pp. 3744–3753.
- ICML-2019-LeeW #algorithm #first-order #performance #problem
- First-Order Algorithms Converge Faster than $O(1/k)$ on Convex Problems (CPL, SW), pp. 3754–3762.
- ICML-2019-LeeYLLLS #classification #generative #robust
- Robust Inference via Generative Classifiers for Handling Noisy Labels (KL, SY, KL, HL, BL, JS), pp. 3763–3772.
- ICML-2019-LeiHKT #nearest neighbour #sublinear
- Sublinear Time Nearest Neighbor Search over Generalized Weighted Space (YL, QH, MSK, AKHT), pp. 3773–3781.
- ICML-2019-LerasleSML #estimation
- MONK Outlier-Robust Mean Embedding Estimation by Median-of-Means (ML, ZS, TM, GL), pp. 3782–3793.
- ICML-2019-CasadoM #constraints #network #orthogonal
- Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group (MLC, DMR), pp. 3794–3803.
- ICML-2019-LiBS #classification #generative #question #robust
- Are Generative Classifiers More Robust to Adversarial Attacks? (YL, JB, YS), pp. 3804–3814.
- ICML-2019-LiCW #algorithm #classification #kernel #linear #quantum #sublinear
- Sublinear quantum algorithms for training linear and kernel-based classifiers (TL, SC, XW), pp. 3815–3824.
- ICML-2019-LiDMMHH #learning #named #network
- LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning (HYL, WD, XM, CM, FH, BGH), pp. 3825–3834.
- ICML-2019-LiGDVK #graph #learning #network #similarity
- Graph Matching Networks for Learning the Similarity of Graph Structured Objects (YL, CG, TD, OV, PK), pp. 3835–3845.
- ICML-2019-LiKBS
- Area Attention (YL0, LK, SB, SS), pp. 3846–3855.
- ICML-2019-LiLS #learning #online #rank
- Online Learning to Rank with Features (SL, TL, CS), pp. 3856–3865.
- ICML-2019-LiLWZG #black box #learning #named #network
- NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks (YL, LL, LW, TZ, BG), pp. 3866–3876.
- ICML-2019-LiMC #visual notation
- Bayesian Joint Spike-and-Slab Graphical Lasso (ZRL, THM, SJC), pp. 3877–3885.
- ICML-2019-LiRC #correlation #crowdsourcing
- Exploiting Worker Correlation for Label Aggregation in Crowdsourcing (YL0, BIPR, TC), pp. 3886–3895.
- ICML-2019-LiSK #learning #physics
- Adversarial camera stickers: A physical camera-based attack on deep learning systems (JL0, FRS, JZK), pp. 3896–3904.
- ICML-2019-LiTOS #analysis #fourier #random #towards
- Towards a Unified Analysis of Random Fourier Features (ZL, JFT, DO, DS), pp. 3905–3914.
- ICML-2019-LiYZH #network
- Feature-Critic Networks for Heterogeneous Domain Generalization (YL, YY, WZ, TMH), pp. 3915–3924.
- ICML-2019-LiZWSX #framework #learning
- Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting (XL, YZ, TW, RS, CX), pp. 3925–3934.
- ICML-2019-LiZT #higher-order
- Alternating Minimizations Converge to Second-Order Optimal Solutions (QL, ZZ, GT), pp. 3935–3943.
- ICML-2019-LiakopoulosDPSM #constraints #online #optimisation
- Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints (NL, AD, GSP, TS, PM), pp. 3944–3952.
- ICML-2019-LichtenbergS
- Regularization in directable environments with application to Tetris (JML, ÖS), pp. 3953–3962.
- ICML-2019-LikhosherstovMC #modelling
- Inference and Sampling of $K_33$-free Ising Models (VL, YM, MC), pp. 3963–3972.
- ICML-2019-LimA #kernel #learning #markov #process #robust
- Kernel-Based Reinforcement Learning in Robust Markov Decision Processes (SHL, AA), pp. 3973–3981.
- ICML-2019-LinHJ #algorithm #analysis #on the #performance
- On Efficient Optimal Transport: An Analysis of Greedy and Accelerated Mirror Descent Algorithms (TL, NH, MIJ), pp. 3982–3991.
- ICML-2019-LinKS #approximate #performance
- Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations (WL, MEK, MWS), pp. 3992–4002.
- ICML-2019-LiuFY
- Acceleration of SVRG and Katyusha X by Inexact Preconditioning (YL0, FF, WY), pp. 4003–4012.
- ICML-2019-LiuLWJ #adaptation #approach #classification
- Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers (HL, ML, JW0, MIJ), pp. 4013–4022.
- ICML-2019-LiuRTJM #probability
- Rao-Blackwellized Stochastic Gradients for Discrete Distributions (RL, JR, NT, MIJ, JDM), pp. 4023–4031.
- ICML-2019-LiuS #learning #multi
- Sparse Extreme Multi-label Learning with Oracle Property (WL, XS0), pp. 4032–4041.
- ICML-2019-LiuS19a #probability
- Data Poisoning Attacks on Stochastic Bandits (FL0, NBS), pp. 4042–4050.
- ICML-2019-LiuSH #learning
- The Implicit Fairness Criterion of Unconstrained Learning (LTL, MS, MH), pp. 4051–4060.
- ICML-2019-LiuSX #learning #performance
- Taming MAML: Efficient unbiased meta-reinforcement learning (HL, RS, CX), pp. 4061–4071.
- ICML-2019-LiuTC #bound #on the
- On Certifying Non-Uniform Bounds against Adversarial Attacks (CL, RT, VC), pp. 4072–4081.
- ICML-2019-LiuZCZ0 #comprehension
- Understanding and Accelerating Particle-Based Variational Inference (CL0, JZ, PC, RZ, JZ0), pp. 4082–4092.
- ICML-2019-LiuZ0 #comprehension
- Understanding MCMC Dynamics as Flows on the Wasserstein Space (CL0, JZ, JZ0), pp. 4093–4103.
- ICML-2019-LiutkusSMDS #generative #modelling #parametricity
- Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions (AL, US, SM, AD, FRS), pp. 4104–4113.
- ICML-2019-LocatelloBLRGSB #learning
- Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (FL, SB, ML, GR, SG, BS, OB), pp. 4114–4124.
- ICML-2019-LondonS
- Bayesian Counterfactual Risk Minimization (BL, TS), pp. 4125–4133.
- ICML-2019-LuHW #convergence #higher-order #named #optimisation
- PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization (SL, MH, ZW), pp. 4134–4143.
- ICML-2019-LuMT0
- Neurally-Guided Structure Inference (SL, JM, JBT, JW0), pp. 4144–4153.
- ICML-2019-LuWHZ #algorithm
- Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards (SL, GW, YH, LZ0), pp. 4154–4163.
- ICML-2019-LuYFZ0 #generative #modelling #named
- CoT: Cooperative Training for Generative Modeling of Discrete Data (SL, LY, SF, YZ, WZ0), pp. 4164–4172.
- ICML-2019-LucibelloSL #approximate #estimation #overview
- Generalized Approximate Survey Propagation for High-Dimensional Estimation (CL, LS, YML), pp. 4173–4182.
- ICML-2019-LucicTRZBG #generative #image
- High-Fidelity Image Generation With Fewer Labels (ML, MT, MR, XZ, OB, SG), pp. 4183–4192.
- ICML-2019-LuiseSPC #predict #rank
- Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction (GL, DS, MP, CC), pp. 4193–4202.
- ICML-2019-PingPSZRW #learning #normalisation #representation
- Differentiable Dynamic Normalization for Learning Deep Representation (LP, ZP, WS, RZ, JR, LW), pp. 4203–4211.
- ICML-2019-Ma0KW0 #graph #network
- Disentangled Graph Convolutional Networks (JM, PC0, KK, XW0, WZ0), pp. 4212–4221.
- ICML-2019-MaLH #process
- Variational Implicit Processes (CM, YL, JMHL), pp. 4222–4233.
- ICML-2019-MaTPHNZ #named #performance
- EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE (CM, ST, KP, JMHL, SN, CZ), pp. 4234–4243.
- ICML-2019-MagnussonAJV #scalability
- Bayesian leave-one-out cross-validation for large data (MM, MRA, JJ, AV), pp. 4244–4253.
- ICML-2019-MahabadiIGR #algorithm #composition
- Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm (SM, PI, SOG, AR), pp. 4254–4263.
- ICML-2019-Maheswaranathan #random
- Guided evolutionary strategies: augmenting random search with surrogate gradients (NM, LM, GT, DC, JSD), pp. 4264–4273.
- ICML-2019-MahloujifarMM #learning #multi
- Data Poisoning Attacks in Multi-Party Learning (SM, MM, AM), pp. 4274–4283.
- ICML-2019-MahoneyM #modelling #network
- Traditional and Heavy Tailed Self Regularization in Neural Network Models (MWM, CM), pp. 4284–4293.
- ICML-2019-MaiJ
- Curvature-Exploiting Acceleration of Elastic Net Computations (VVM, MJ0), pp. 4294–4303.
- ICML-2019-MakkuvaVKO #algorithm #consistency #performance
- Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms (AVM, PV, SK, SO), pp. 4304–4313.
- ICML-2019-MalikKSNSE #learning #modelling
- Calibrated Model-Based Deep Reinforcement Learning (AM, VK, JS, DN, HS, SE), pp. 4314–4323.
- ICML-2019-MannGGHJLS #learning #recommendation
- Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems (TAM, SG, AG, HH, RJ, BL, PS), pp. 4324–4332.
- ICML-2019-MannelliKUZ #algorithm #modelling
- Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models (SSM, FK, PU, LZ), pp. 4333–4342.
- ICML-2019-MaoFRAFW #estimation #graph #order #probability
- A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs (JM, JNF, TR, MAS, GF, SW), pp. 4343–4351.
- ICML-2019-MarafiotiPHM #generative #synthesis
- Adversarial Generation of Time-Frequency Features with application in audio synthesis (AM, NP, NH, PM), pp. 4352–4362.
- ICML-2019-MaronFSL #invariant #network #on the
- On the Universality of Invariant Networks (HM, EF, NS, YL), pp. 4363–4371.
- ICML-2019-MartensCY #modelling #process
- Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models (KM, KRC, CY), pp. 4372–4381.
- ICML-2019-MaryCK #learning
- Fairness-Aware Learning for Continuous Attributes and Treatments (JM, CC, NEK), pp. 4382–4391.
- ICML-2019-MathiasenLG
- Optimal Minimal Margin Maximization with Boosting (AM, KGL, AG), pp. 4392–4401.
- ICML-2019-MathieuRST
- Disentangling Disentanglement in Variational Autoencoders (EM, TR, NS0, YWT), pp. 4402–4412.
- ICML-2019-MatteiF #generative #modelling #named #semistructured data #set
- MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets (PAM, JF), pp. 4413–4423.
- ICML-2019-MavrinYKWY #learning #performance
- Distributional Reinforcement Learning for Efficient Exploration (BM, HY, LK, KW, YY), pp. 4424–4434.
- ICML-2019-McKennaSM #difference #estimation #modelling #privacy
- Graphical-model based estimation and inference for differential privacy (RM, DS, GM), pp. 4435–4444.
- ICML-2019-RoederGPDM #performance
- Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems (GR, PKG, AP, ND, EM), pp. 4445–4455.
- ICML-2019-MehrotraCV #online #towards
- Toward Controlling Discrimination in Online Ad Auctions (LEC, AM, NKV), pp. 4456–4465.
- ICML-2019-MehtaCR #graph #network #probability
- Stochastic Blockmodels meet Graph Neural Networks (NM, LC, PR), pp. 4466–4474.
- ICML-2019-MeiQE
- Imputing Missing Events in Continuous-Time Event Streams (HM, GQ, JE), pp. 4475–4485.
- ICML-2019-MellerFAG #fault #network
- Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization (EM, AF, UA, MG), pp. 4486–4495.
- ICML-2019-MemoliSW
- The Wasserstein Transform (FM, ZTS, ZW), pp. 4496–4504.
- ICML-2019-MendisRAC #estimation #named #network #performance #throughput #using
- Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks (CM, AR, SPA, MC), pp. 4505–4515.
- ICML-2019-MenschBP #geometry #learning
- Geometric Losses for Distributional Learning (AM, MB, GP), pp. 4516–4525.
- ICML-2019-MercadoT0 #clustering #graph #matrix
- Spectral Clustering of Signed Graphs via Matrix Power Means (PM0, FT, MH0), pp. 4526–4536.
- ICML-2019-MetelT #optimisation #probability
- Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization (MRM, AT), pp. 4537–4545.
- ICML-2019-MetelliGR #configuration management #learning
- Reinforcement Learning in Configurable Continuous Environments (AMM, EG, MR), pp. 4546–4555.
- ICML-2019-MetzMNFS #comprehension
- Understanding and correcting pathologies in the training of learned optimizers (LM, NM, JN, CDF, JSD), pp. 4556–4565.
- ICML-2019-MeyerH #classification #kernel #performance #statistics
- Optimality Implies Kernel Sum Classifiers are Statistically Efficient (RAM, JH), pp. 4566–4574.
- ICML-2019-MianjyA #on the
- On Dropout and Nuclear Norm Regularization (PM, RA), pp. 4575–4584.
- ICML-2019-MillerOCM #modelling
- Discriminative Regularization for Latent Variable Models with Applications to Electrocardiography (ACM, ZO, JPC, SM), pp. 4585–4594.
- ICML-2019-MirshaniRS #functional #privacy
- Formal Privacy for Functional Data with Gaussian Perturbations (AM, MR, ABS), pp. 4595–4604.
- ICML-2019-MishneCC #learning
- Co-manifold learning with missing data (GM, ECC, RRC), pp. 4605–4614.
- ICML-2019-MohriSS #learning
- Agnostic Federated Learning (MM, GS, ATS), pp. 4615–4625.
- ICML-2019-MollenhoffC #generative #metric #modelling
- Flat Metric Minimization with Applications in Generative Modeling (TM, DC), pp. 4626–4635.
- ICML-2019-MoonAS #black box #combinator #optimisation #performance
- Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization (SM, GA, HOS), pp. 4636–4645.
- ICML-2019-MostafaW #network #parametricity #performance
- Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization (HM, XW), pp. 4646–4655.
- ICML-2019-MuehlebachJ
- A Dynamical Systems Perspective on Nesterov Acceleration (MM, MIJ), pp. 4656–4662.
- ICML-2019-Murphy0R0 #graph #relational
- Relational Pooling for Graph Representations (RLM, BS0, VAR, BR0), pp. 4663–4673.
- ICML-2019-NabiMS #learning #policy
- Learning Optimal Fair Policies (RN, DM, IS), pp. 4674–4682.
- ICML-2019-NacsonGLSS #modelling
- Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models (MSN, SG, JDL, NS, DS), pp. 4683–4692.
- ICML-2019-NaganoY0K #learning
- A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning (YN, SY, YF0, MK), pp. 4693–4702.
- ICML-2019-Nagaraj0N
- SGD without Replacement: Sharper Rates for General Smooth Convex Functions (DN, PJ0, PN), pp. 4703–4711.
- ICML-2019-NalisnickHS
- Dropout as a Structured Shrinkage Prior (ETN, JMHL, PS), pp. 4712–4722.
- ICML-2019-NalisnickMTGL #hybrid #modelling
- Hybrid Models with Deep and Invertible Features (ETN, AM, YWT, DG, BL), pp. 4723–4732.
- ICML-2019-NamKMPSF #classification #learning #multi #permutation
- Learning Context-dependent Label Permutations for Multi-label Classification (JN, YBK, ELM, SP, RS, JF), pp. 4733–4742.
- ICML-2019-NayakMSRC #network
- Zero-Shot Knowledge Distillation in Deep Networks (GKN, KRM, VS, VBR, AC), pp. 4743–4751.
- ICML-2019-NayebiMP #embedded #framework #optimisation
- A Framework for Bayesian Optimization in Embedded Subspaces (AN, AM, MP), pp. 4752–4761.
- ICML-2019-NayerNV #matrix #metric #rank
- Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements (SN, PN, NV), pp. 4762–4770.
- ICML-2019-NdiayeLFST #complexity #grid
- Safe Grid Search with Optimal Complexity (EN, TL, OF, JS, IT), pp. 4771–4780.
- ICML-2019-NedelecKP #learning
- Learning to bid in revenue-maximizing auctions (TN, NEK, VP), pp. 4781–4789.
- ICML-2019-Nguyen #learning #on the #set
- On Connected Sublevel Sets in Deep Learning (QN), pp. 4790–4799.
- ICML-2019-NguyenLKB #detection #multi #predict
- Anomaly Detection With Multiple-Hypotheses Predictions (DTN, ZL, MK, TB), pp. 4800–4809.
- ICML-2019-NguyenSR #analysis #monte carlo #optimisation
- Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization (THN, US, GR), pp. 4810–4819.
- ICML-2019-NirwanB #invariant
- Rotation Invariant Householder Parameterization for Bayesian PCA (RSN, NB), pp. 4820–4828.
- ICML-2019-NockW #integer
- Lossless or Quantized Boosting with Integer Arithmetic (RN, RCW), pp. 4829–4838.
- ICML-2019-NoklandE #fault #network
- Training Neural Networks with Local Error Signals (AN, LHE), pp. 4839–4850.
- ICML-2019-NovatiK #experience
- Remember and Forget for Experience Replay (GN, PK), pp. 4851–4860.
- ICML-2019-NyeHTS #learning #sketching
- Learning to Infer Program Sketches (MIN, LBH, JBT, ASL), pp. 4861–4870.
- ICML-2019-ObermeyerBJPCRG #graph
- Tensor Variable Elimination for Plated Factor Graphs (FO, EB, MJ, NP, JC, AMR, NDG), pp. 4871–4880.
- ICML-2019-OberstS #evaluation #modelling
- Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models (MO, DAS), pp. 4881–4890.
- ICML-2019-OchsM
- Model Function Based Conditional Gradient Method with Armijo-like Line Search (PO, YM), pp. 4891–4900.
- ICML-2019-OdenaOAG #debugging #fuzzing #named #network
- TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing (AO, CO, DA, IJG), pp. 4901–4911.
- ICML-2019-OglicG #kernel #learning #scalability
- Scalable Learning in Reproducing Kernel Krein Spaces (DO, TG0), pp. 4912–4921.
- ICML-2019-OonoS #approximate #estimation #network #parametricity
- Approximation and non-parametric estimation of ResNet-type convolutional neural networks (KO, TS), pp. 4922–4931.
- ICML-2019-OprescuSW #orthogonal #random
- Orthogonal Random Forest for Causal Inference (MO, VS, ZSW), pp. 4932–4941.
- ICML-2019-OsamaZS
- Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding (MO, DZ, TBS), pp. 4942–4950.
- ICML-2019-OymakS #learning #question
- Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path? (SO, MS), pp. 4951–4960.
- ICML-2019-PanageasPW #algorithm #convergence #distributed #higher-order #multi #optimisation
- Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always (IP, GP, XW), pp. 4961–4969.
- ICML-2019-PangXDCZ #robust
- Improving Adversarial Robustness via Promoting Ensemble Diversity (TP, KX, CD, NC, JZ0), pp. 4970–4979.
- ICML-2019-PanousisCT #contest #network #parametricity
- Nonparametric Bayesian Deep Networks with Local Competition (KPP, SC, ST), pp. 4980–4988.
- ICML-2019-PapiniMLR #multi #optimisation #policy
- Optimistic Policy Optimization via Multiple Importance Sampling (MP, AMM, LL, MR), pp. 4989–4999.
- ICML-2019-PappasH #generative
- Deep Residual Output Layers for Neural Language Generation (NP0, JH), pp. 5000–5011.
- ICML-2019-Papyan #metric
- Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians (VP), pp. 5012–5021.
- ICML-2019-Parizi0ASF
- Generalized Majorization-Minimization (SNP, KH0, RA, SS, PFF), pp. 5022–5031.
- ICML-2019-ParkKK
- Variational Laplace Autoencoders (YSP, CDK, GK), pp. 5032–5041.
- ICML-2019-ParkSLS #empirical #network #probability
- The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study (DSP, JSD, QVL, SLS), pp. 5042–5051.
- ICML-2019-ParkYYS #approximate
- Spectral Approximate Inference (SP, EY, SYY, JS), pp. 5052–5061.
- ICML-2019-PathakG0 #self
- Self-Supervised Exploration via Disagreement (DP, DG, AG0), pp. 5062–5071.
- ICML-2019-PatyC #robust
- Subspace Robust Wasserstein Distances (FPP, MC), pp. 5072–5081.
- ICML-2019-PaulOW #learning #optimisation #policy #robust
- Fingerprint Policy Optimisation for Robust Reinforcement Learning (SP, MAO, SW), pp. 5082–5091.
- ICML-2019-0001HLZZ #clustering #multi #named #parametricity
- COMIC: Multi-view Clustering Without Parameter Selection (XP0, ZH, JL, HZ, JTZ), pp. 5092–5101.
- ICML-2019-PengHSS #learning
- Domain Agnostic Learning with Disentangled Representations (XP, ZH, XS, KS), pp. 5102–5112.
- ICML-2019-PengWCH #collaboration #network
- Collaborative Channel Pruning for Deep Networks (HP, JW, SC, JH), pp. 5113–5122.
- ICML-2019-PerraultPV #nondeterminism #performance
- Exploiting structure of uncertainty for efficient matroid semi-bandits (PP, VP, MV), pp. 5123–5132.
- ICML-2019-PetersonB0GR #predict
- Cognitive model priors for predicting human decisions (JCP, DB, DR0, TLG, SJR), pp. 5133–5141.
- ICML-2019-PhuongL #comprehension #towards
- Towards Understanding Knowledge Distillation (MP, CL), pp. 5142–5151.
- ICML-2019-PiergiovanniR
- Temporal Gaussian Mixture Layer for Videos (AJP, MSR), pp. 5152–5161.
- ICML-2019-PolianskiiP #approach #bound #classification #geometry #integration #monte carlo
- Voronoi Boundary Classification: A High-Dimensional Geometric Approach via Weighted Monte Carlo Integration (VP, FTP), pp. 5162–5170.
- ICML-2019-PooleOOAT #bound #on the
- On Variational Bounds of Mutual Information (BP, SO, AvdO, AA, GT), pp. 5171–5180.
- ICML-2019-PurohitGR #nondeterminism
- Hiring Under Uncertainty (MP, SG, MR), pp. 5181–5189.
- ICML-2019-QianQR
- SAGA with Arbitrary Sampling (XQ, ZQ, PR), pp. 5190–5199.
- ICML-2019-QianRGSLS #analysis
- SGD with Arbitrary Sampling: General Analysis and Improved Rates (XQ, PR, RMG, AS, NL, ES), pp. 5200–5209.
- ICML-2019-QianZCYH #named
- AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss (KQ, YZ, SC, XY, MHJ), pp. 5210–5219.
- ICML-2019-QiaoAZX #fault tolerance #machine learning
- Fault Tolerance in Iterative-Convergent Machine Learning (AQ, BA, BZ, EPX), pp. 5220–5230.
- ICML-2019-QinCCGR #automation #recognition #robust #speech
- Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition (YQ, NC, GWC, IJG, CR), pp. 5231–5240.
- ICML-2019-QuBT #graph #markov #named #network
- GMNN: Graph Markov Neural Networks (MQ, YB, JT0), pp. 5241–5250.
- ICML-2019-QuMX #learning
- Nonlinear Distributional Gradient Temporal-Difference Learning (CQ, SM, HX), pp. 5251–5260.
- ICML-2019-RadanovicDPS #learning #markov #process
- Learning to Collaborate in Markov Decision Processes (GR, RD, DCP, AS), pp. 5261–5270.
- ICML-2019-RaeBL
- Meta-Learning Neural Bloom Filters (JWR, SB, TPL), pp. 5271–5280.
- ICML-2019-RaghuBSOKMK #nondeterminism #predict
- Direct Uncertainty Prediction for Medical Second Opinions (MR, KB, RS, ZO, RDK, SM, JMK), pp. 5281–5290.
- ICML-2019-RaghunathanCJ #game studies #optimisation
- Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function (AUR, AC, DKJ), pp. 5291–5300.
- ICML-2019-RahamanBADLHBC #bias #network #on the
- On the Spectral Bias of Neural Networks (NR, AB, DA, FD, ML, FAH, YB, ACC), pp. 5301–5310.
- ICML-2019-RahmanJG #compilation #network
- Look Ma, No Latent Variables: Accurate Cutset Networks via Compilation (TR, SJ, VG), pp. 5311–5320.
- ICML-2019-RajputFCLP #question
- Does Data Augmentation Lead to Positive Margin? (SR, ZF, ZBC, PLL, DSP), pp. 5321–5330.
- ICML-2019-RakellyZFLQ #learning #performance #probability
- Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables (KR, AZ, CF, SL, DQ), pp. 5331–5340.
- ICML-2019-RakotomamonjyGS
- Screening rules for Lasso with non-convex Sparse Regularizers (AR, GG, JS), pp. 5341–5350.
- ICML-2019-RamamurthyVM #bound #data analysis
- Topological Data Analysis of Decision Boundaries with Application to Model Selection (KNR, KRV, KM), pp. 5351–5360.
- ICML-2019-RatzlaffL #generative #named #network
- HyperGAN: A Generative Model for Diverse, Performant Neural Networks (NR, FL), pp. 5361–5369.
- ICML-2019-Ravi #modelling #performance #using
- Efficient On-Device Models using Neural Projections (SR), pp. 5370–5379.
- ICML-2019-Raziperchikolaei #coordination #estimation #parametricity
- A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation (RR, HSB), pp. 5380–5388.
- ICML-2019-RechtRSS #classification #question
- Do ImageNet Classifiers Generalize to ImageNet? (BR, RR, LS, VS), pp. 5389–5400.
- ICML-2019-ReeveK #classification #performance #robust #symmetry
- Fast Rates for a kNN Classifier Robust to Unknown Asymmetric Label Noise (HWJR, AK), pp. 5401–5409.
- ICML-2019-RenTQZZL #automation #recognition #speech
- Almost Unsupervised Text to Speech and Automatic Speech Recognition (YR, XT, TQ, SZ, ZZ, TYL), pp. 5410–5419.
- ICML-2019-RenZE #adaptation #reduction
- Adaptive Antithetic Sampling for Variance Reduction (HR, SZ, SE), pp. 5420–5428.
- ICML-2019-ReslerM #learning #online
- Adversarial Online Learning with noise (AR, YM), pp. 5429–5437.
- ICML-2019-RezaeiG #polynomial #process
- A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes (AR, SOG), pp. 5438–5447.
- ICML-2019-RieckBB #classification #graph #persistent
- A Persistent Weisfeiler-Lehman Procedure for Graph Classification (BR, CB, KMB), pp. 5448–5458.
- ICML-2019-RollandKISC #learning #performance #probability #testing
- Efficient learning of smooth probability functions from Bernoulli tests with guarantees (PR, AK, AI, AS, VC), pp. 5459–5467.
- ICML-2019-Romoff0TOPB
- Separable value functions across time-scales (JR, PH0, AT, YO, JP, EB), pp. 5468–5477.
- ICML-2019-RosenbergM #markov #online #optimisation #process
- Online Convex Optimization in Adversarial Markov Decision Processes (AR0, YM), pp. 5478–5486.
- ICML-2019-RossiMF #modelling
- Good Initializations of Variational Bayes for Deep Models (SR, PM, MF), pp. 5487–5497.
- ICML-2019-RothKH #detection #statistics
- The Odds are Odd: A Statistical Test for Detecting Adversarial Examples (KR, YK, TH), pp. 5498–5507.
- ICML-2019-RotskoffJBV
- Neuron birth-death dynamics accelerates gradient descent and converges asymptotically (GMR, SJ, JB, EVE), pp. 5508–5517.
- ICML-2019-RouletDSH #algorithm #complexity
- Iterative Linearized Control: Stable Algorithms and Complexity Guarantees (VR, DD, SSS, ZH), pp. 5518–5527.
- ICML-2019-RowlandDKMBD #learning #statistics
- Statistics and Samples in Distributional Reinforcement Learning (MR, RD, SK, RM, MGB, WD), pp. 5528–5536.
- ICML-2019-RuizT
- A Contrastive Divergence for Combining Variational Inference and MCMC (FJRR, MKT), pp. 5537–5545.
- ICML-2019-RyuLWCWY
- Plug-and-Play Methods Provably Converge with Properly Trained Denoisers (EKR, JL0, SW, XC, ZW, WY), pp. 5546–5557.
- ICML-2019-SablayrollesDSO #black box
- White-box vs Black-box: Bayes Optimal Strategies for Membership Inference (AS, MD, CS, YO, HJ), pp. 5558–5567.
- ICML-2019-SafaviB #graph #multi
- Tractable n-Metrics for Multiple Graphs (SS, JB), pp. 5568–5578.
- ICML-2019-SajedS #algorithm
- An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule (TS, OS), pp. 5579–5588.
- ICML-2019-SalimbeniDHD #process
- Deep Gaussian Processes with Importance-Weighted Variational Inference (HS, VD, JH, MPD), pp. 5589–5598.
- ICML-2019-SantiagoS #multi #optimisation
- Multivariate Submodular Optimization (RS, FBS), pp. 5599–5609.
- ICML-2019-SarkarR #finite #identification #linear
- Near optimal finite time identification of arbitrary linear dynamical systems (TS, AR), pp. 5610–5618.
- ICML-2019-SatoILT #adaptation #classification #co-evolution
- Breaking Inter-Layer Co-Adaptation by Classifier Anonymization (IS, KI, GL, MT), pp. 5619–5627.
- ICML-2019-SaunshiPAKK #analysis #learning #representation
- A Theoretical Analysis of Contrastive Unsupervised Representation Learning (NS, OP, SA, MK, HK), pp. 5628–5637.
- ICML-2019-ScheinWSZW #modelling
- Locally Private Bayesian Inference for Count Models (AS, ZSW, AS, MZ, HMW), pp. 5638–5648.
- ICML-2019-SchroeterSM #learning #locality
- Weakly-Supervised Temporal Localization via Occurrence Count Learning (JS, KAS, ADM), pp. 5649–5659.
- ICML-2019-SeshadriPU
- Discovering Context Effects from Raw Choice Data (AS, AP, JU), pp. 5660–5669.
- ICML-2019-ShahGAD #bias #learning #on the
- On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference (RS, NG, PA, ADD), pp. 5670–5679.
- ICML-2019-ShaniEM #learning #revisited
- Exploration Conscious Reinforcement Learning Revisited (LS, YE, SM), pp. 5680–5689.
- ICML-2019-SharanTBV #performance #rank
- Compressed Factorization: Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data (VS, KST, PB, GV), pp. 5690–5700.
- ICML-2019-ShenHCD #independence #network #testing
- Conditional Independence in Testing Bayesian Networks (YS, HH, AC, AD), pp. 5701–5709.
- ICML-2019-ShenLL #learning
- Learning to Clear the Market (WS, SL, RPL), pp. 5710–5718.
- ICML-2019-ShenOAR #modelling
- Mixture Models for Diverse Machine Translation: Tricks of the Trade (TS, MO, MA, MR), pp. 5719–5728.
- ICML-2019-ShenRHQM #policy
- Hessian Aided Policy Gradient (ZS, AR, HH, HQ, CM), pp. 5729–5738.
- ICML-2019-ShenS #learning
- Learning with Bad Training Data via Iterative Trimmed Loss Minimization (YS, SS), pp. 5739–5748.
- ICML-2019-ShestopaloffD #monte carlo
- Replica Conditional Sequential Monte Carlo (AS, AD), pp. 5749–5757.
- ICML-2019-ShiK0 #modelling #network #scalability
- Scalable Training of Inference Networks for Gaussian-Process Models (JS, MEK, JZ0), pp. 5758–5768.
- ICML-2019-Shi0 #learning #multi #performance
- Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning (WS, QY0), pp. 5769–5778.
- ICML-2019-ShyamJG #modelling
- Model-Based Active Exploration (PS, WJ, FG), pp. 5779–5788.
- ICML-2019-SiminelakisRBCL #evaluation #kernel
- Rehashing Kernel Evaluation in High Dimensions (PS, KR, PB, MC, PL), pp. 5789–5798.
- ICML-2019-SimonWR #generative #modelling #precise
- Revisiting precision recall definition for generative modeling (LS, RW, JR), pp. 5799–5808.
- ICML-2019-Simon-GabrielOB #first-order #network
- First-Order Adversarial Vulnerability of Neural Networks and Input Dimension (CJSG, YO, LB, BS, DLP), pp. 5809–5817.
- ICML-2019-SimonovFGP #complexity
- Refined Complexity of PCA with Outliers (KS, FVF, PAG, FP), pp. 5818–5826.
- ICML-2019-SimsekliSG #analysis #network #probability
- A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks (US, LS, MG), pp. 5827–5837.
- ICML-2019-SinghTJGB #generative #network #parametricity
- Non-Parametric Priors For Generative Adversarial Networks (RS, PKT, SJ, RG, MWB), pp. 5838–5847.
- ICML-2019-SinglaWFF #approximate #comprehension #higher-order #learning
- Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation (SS0, EW, SF, SF), pp. 5848–5856.
- ICML-2019-SlimCAV #framework #kernel #named
- kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection (LS, CC0, CAA, JPV), pp. 5857–5865.
- ICML-2019-SmithFRM #geometry #named
- GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects (EJS, SF, AR, DM), pp. 5866–5876.
- ICML-2019-SoLL
- The Evolved Transformer (DRS, QVL, CL), pp. 5877–5886.
- ICML-2019-SonKKHY #learning #multi #named
- QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning (KS, DK, WJK, DH, YY), pp. 5887–5896.
- ICML-2019-SongDKF
- Distribution calibration for regression (HS, TD, MK, PAF), pp. 5897–5906.
- ICML-2019-SongK0 #learning #named #robust
- SELFIE: Refurbishing Unclean Samples for Robust Deep Learning (HS, MK, JGL0), pp. 5907–5915.
- ICML-2019-SongPC #perspective
- Revisiting the Softmax Bellman Operator: New Benefits and New Perspective (ZS, RP, LC), pp. 5916–5925.
- ICML-2019-SongTQLL #generative #named #sequence
- MASS: Masked Sequence to Sequence Pre-training for Language Generation (KS, XT, TQ, JL, TYL), pp. 5926–5936.
- ICML-2019-SotoLF #3d #distributed #matrix #multi #polynomial
- Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication (PS, JL, XF), pp. 5937–5945.
- ICML-2019-SpringKMS #sketching
- Compressing Gradient Optimizers via Count-Sketches (RS, AK, VM, AS), pp. 5946–5955.
- ICML-2019-StaibRKKS #adaptation
- Escaping Saddle Points with Adaptive Gradient Methods (MS, SJR, SK, SK, SS), pp. 5956–5965.
- ICML-2019-StelznerPK #modelling #performance #probability
- Faster Attend-Infer-Repeat with Tractable Probabilistic Models (KS, RP, KK), pp. 5966–5975.
- ICML-2019-SternCKU #flexibility #generative #sequence
- Insertion Transformer: Flexible Sequence Generation via Insertion Operations (MS, WC, JK, JU), pp. 5976–5985.
- ICML-2019-Stickland0 #adaptation #learning #multi #performance
- BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning (ACS, IM0), pp. 5986–5995.
- ICML-2019-Streeter #learning #linear
- Learning Optimal Linear Regularizers (MS), pp. 5996–6004.
- ICML-2019-SuWSJ #adaptation #evaluation #learning #named #policy
- CAB: Continuous Adaptive Blending for Policy Evaluation and Learning (YS, LW, MS, TJ), pp. 6005–6014.
- ICML-2019-SuW #distance #learning #metric #sequence
- Learning Distance for Sequences by Learning a Ground Metric (BS, YW), pp. 6015–6025.
- ICML-2019-SunBD0M #memory management
- Contextual Memory Trees (WS, AB, HDI, JL0, PM), pp. 6026–6035.
- ICML-2019-0002VBB #learning #performance
- Provably Efficient Imitation Learning from Observation Alone (WS0, AV, BB, DB), pp. 6036–6045.
- ICML-2019-SundinSSVSK #learning
- Active Learning for Decision-Making from Imbalanced Observational Data (IS, PS, ES, AV, SS, SK), pp. 6046–6055.
- ICML-2019-SuterMSB #robust #validation
- Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness (RS, ÐM, BS, SB), pp. 6056–6065.
- ICML-2019-0008TO #graph
- Hyperbolic Disk Embeddings for Directed Acyclic Graphs (RS0, RT, SO), pp. 6066–6075.
- ICML-2019-TaghvaeiM #probability
- Accelerated Flow for Probability Distributions (AT, PGM), pp. 6076–6085.
- ICML-2019-TaiBV #network
- Equivariant Transformer Networks (KST, PB, GV), pp. 6086–6095.
- ICML-2019-TallecBO #robust
- Making Deep Q-learning methods robust to time discretization (CT, LB, YO), pp. 6096–6104.
- ICML-2019-TanL #named #network #scalability
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (MT, QVL), pp. 6105–6114.
- ICML-2019-TanP
- Hierarchical Decompositional Mixtures of Variational Autoencoders (PLT, RP), pp. 6115–6124.
- ICML-2019-Tang #modelling #ranking
- Mallows ranking models: maximum likelihood estimate and regeneration (WT), pp. 6125–6134.
- ICML-2019-TangLJR #correlation
- Correlated Variational Auto-Encoders (DT, DL, TJ, NR), pp. 6135–6144.
- ICML-2019-TangR #predict
- The Variational Predictive Natural Gradient (DT, RR), pp. 6145–6154.
- ICML-2019-TangYLZL #named #parallel #probability
- DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression (HT, CY, XL, TZ, JL0), pp. 6155–6165.
- ICML-2019-TannoAACN #adaptation
- Adaptive Neural Trees (RT, KA, DCA, AC, AVN), pp. 6166–6175.
- ICML-2019-TaoDCBCLZBC #perspective
- Variational Annealing of GANs: A Langevin Perspective (CT, SD, LC, KB, JC, CL0, RZ, GVB, LC), pp. 6176–6185.
- ICML-2019-TavaresBMSR #declarative
- Predicate Exchange: Inference with Declarative Knowledge (ZT, JB, EM, ASL, RR), pp. 6186–6195.
- ICML-2019-TennenholtzM #natural language
- The Natural Language of Actions (GT, SM), pp. 6196–6205.
- ICML-2019-TeradaY #kernel #normalisation
- Kernel Normalized Cut: a Theoretical Revisit (YT, MY), pp. 6206–6214.
- ICML-2019-TesslerEM #learning #robust
- Action Robust Reinforcement Learning and Applications in Continuous Control (CT, YE, SM), pp. 6215–6224.
- ICML-2019-ThomasL
- Concentration Inequalities for Conditional Value at Risk (PST, EGLM), pp. 6225–6233.
- ICML-2019-ThulasidasanBBC #learning #using
- Combating Label Noise in Deep Learning using Abstention (ST, TB, JAB, GC, JMY), pp. 6234–6243.
- ICML-2019-TianMGSCPZ #analysis
- ELF OpenGo: an analysis and open reimplementation of AlphaZero (YT, JM, QG, SS, ZC, JP, LZ), pp. 6244–6253.
- ICML-2019-TiomokoCBG #estimation #matrix #metric #random #scalability
- Random Matrix Improved Covariance Estimation for a Large Class of Metrics (MT, RC, FB, GG), pp. 6254–6263.
- ICML-2019-TirinzoniSR #multi #policy
- Transfer of Samples in Policy Search via Multiple Importance Sampling (AT, MS, MR), pp. 6264–6274.
- ICML-2019-VayerCTCF #graph
- Optimal Transport for structured data with application on graphs (TV, NC, RT, LC, RF), pp. 6275–6284.
- ICML-2019-TongC #multi
- Discovering Latent Covariance Structures for Multiple Time Series (AT, JC), pp. 6285–6294.
- ICML-2019-TranDRC #generative #learning
- Bayesian Generative Active Deep Learning (TT, TTD, IDR0, GC), pp. 6295–6304.
- ICML-2019-TranKSK #named #network #using
- DeepNose: Using artificial neural networks to represent the space of odorants (NBT, DRK, SS, AAK), pp. 6305–6314.
- ICML-2019-TrippeHAB #approximate #named #rank #using
- LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations (BLT, JHH, RA, TB), pp. 6315–6324.
- ICML-2019-TrouleauEGKT #learning #process
- Learning Hawkes Processes Under Synchronization Noise (WT, JE, MG, NK, PT), pp. 6325–6334.
- ICML-2019-TsakirisP
- Homomorphic Sensing (MCT, LP), pp. 6335–6344.
- ICML-2019-TurnerHFSY #generative #network
- Metropolis-Hastings Generative Adversarial Networks (RDT, JH, EF, YS, JY), pp. 6345–6353.
- ICML-2019-TzengW #detection #distributed #graph
- Distributed, Egocentric Representations of Graphs for Detecting Critical Structures (RCT, SHW), pp. 6354–6362.
- ICML-2019-Upadhyay #algorithm #sublinear
- Sublinear Space Private Algorithms Under the Sliding Window Model (JU), pp. 6363–6372.
- ICML-2019-UstunLP #classification
- Fairness without Harm: Decoupled Classifiers with Preference Guarantees (BU, YL0, DCP), pp. 6373–6382.
- ICML-2019-UurtioBR #analysis #canonical #correlation #kernel #scalability
- Large-Scale Sparse Kernel Canonical Correlation Analysis (VU, SB, JR), pp. 6383–6391.
- ICML-2019-DijkNNP #convergence
- Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD (MvD, LMN, PHN, DTP), pp. 6392–6400.
- ICML-2019-NiekerkJER #learning
- Composing Value Functions in Reinforcement Learning (BvN, SJ, ACE, BR), pp. 6401–6409.
- ICML-2019-VargasBH #comparison #difference #semantics
- Model Comparison for Semantic Grouping (FV, KB, NH), pp. 6410–6417.
- ICML-2019-VarmaSHRR #dependence #learning #modelling
- Learning Dependency Structures for Weak Supervision Models (PV, FS, AH, AR, CR), pp. 6418–6427.
- ICML-2019-VedantamDLRBP #modelling #probability #visual notation
- Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering (RV, KD, SL, MR, DB, DP), pp. 6428–6437.
- ICML-2019-VermaLBNMLB
- Manifold Mixup: Better Representations by Interpolating Hidden States (VV, AL, CB, AN, IM, DLP, YB), pp. 6438–6447.
- ICML-2019-VinayakKVK #estimation #learning #parametricity
- Maximum Likelihood Estimation for Learning Populations of Parameters (RKV, WK, GV, SMK), pp. 6448–6457.
- ICML-2019-VladimirovaVMA #comprehension #network
- Understanding Priors in Bayesian Neural Networks at the Unit Level (MV, JV, PM, JA), pp. 6458–6467.
- ICML-2019-VlassisBDJ #design #evaluation #on the
- On the Design of Estimators for Bandit Off-Policy Evaluation (NV, AB, MD, TJ), pp. 6468–6476.
- ICML-2019-VorobevUGS #learning #ranking
- Learning to select for a predefined ranking (AV, AU, GG, PS), pp. 6477–6486.
- ICML-2019-WagstaffFEPO #on the #representation #set
- On the Limitations of Representing Functions on Sets (EW, FF, ME, IP, MAO), pp. 6487–6494.
- ICML-2019-WalkerG #graph #process
- Graph Convolutional Gaussian Processes (IW, BG), pp. 6495–6504.
- ICML-2019-Wang #low cost
- Gaining Free or Low-Cost Interpretability with Interpretable Partial Substitute (TW), pp. 6505–6514.
- ICML-2019-Wang0XZ #network
- Convolutional Poisson Gamma Belief Network (CW, BC0, SX, MZ), pp. 6515–6525.
- ICML-2019-WangC0 #empirical
- Differentially Private Empirical Risk Minimization with Non-convex Loss Functions (DW, CC, JX0), pp. 6526–6535.
- ICML-2019-WangCAD #estimation #learning #policy #random
- Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation (RW, CC, PVA, YD), pp. 6536–6544.
- ICML-2019-WangDWK #learning #logic #named #reasoning #satisfiability #using
- SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver (PWW, PLD, BW, JZK), pp. 6545–6554.
- ICML-2019-WangG0 #modelling
- Improving Neural Language Modeling via Adversarial Training (DW, CG, QL0), pp. 6555–6565.
- ICML-2019-WangGFZ #named
- EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis (CW, RBG, SF, GZ), pp. 6566–6575.
- ICML-2019-Wang0 #learning #modelling
- Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models (DW, QL0), pp. 6576–6585.
- ICML-2019-WangM0YZG #convergence #on the #robust
- On the Convergence and Robustness of Adversarial Training (YW0, XM, JB0, JY, BZ, QG), pp. 6586–6595.
- ICML-2019-WangN #network
- State-Regularized Recurrent Neural Networks (CW, MN), pp. 6596–6606.
- ICML-2019-WangSMGFJ
- Deep Factors for Forecasting (YW, AS, DCM, JG, DF, TJ), pp. 6607–6617.
- ICML-2019-WangUC
- Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions (HW0, BU, FPC), pp. 6618–6627.
- ICML-2019-Wang019a #difference #linear #on the #privacy
- On Sparse Linear Regression in the Local Differential Privacy Model (DW, JX0), pp. 6628–6637.
- ICML-2019-WangZ0Q #learning #random #recommendation #robust
- Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random (XW, RZ0, YS0, JQ0), pp. 6638–6647.
- ICML-2019-WangZXS #learning #on the
- On the Generalization Gap in Reparameterizable Reinforcement Learning (HW, SZ, CX, RS), pp. 6648–6658.
- ICML-2019-WangZB #bias #matter #network
- Bias Also Matters: Bias Attribution for Deep Neural Network Explanation (SW, TZ, JAB), pp. 6659–6667.
- ICML-2019-WangZB19a #network
- Jumpout : Improved Dropout for Deep Neural Networks with ReLUs (SW, TZ, JAB), pp. 6668–6676.
- ICML-2019-WardWB #convergence
- AdaGrad stepsizes: sharp convergence over nonconvex landscapes (RW, XW, LB), pp. 6677–6686.
- ICML-2019-WeiDGG #linear #modelling
- Generalized Linear Rule Models (DW, SD, TG, OG), pp. 6687–6696.
- ICML-2019-WeiYW #generative #modelling #on the #statistics
- On the statistical rate of nonlinear recovery in generative models with heavy-tailed data (XW, ZY, ZW), pp. 6697–6706.
- ICML-2019-WeiszGS #algorithm #approximate #named
- CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration (GW, AG, CS), pp. 6707–6715.
- ICML-2019-WelleckBDC #generative
- Non-Monotonic Sequential Text Generation (SW, KB, HDI, KC), pp. 6716–6726.
- ICML-2019-WengCNSBOD #approach #named #network #probability #robust #verification
- PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach (LW, PYC, LMN, MSS, AB, IVO, LD), pp. 6727–6736.
- ICML-2019-LiSSG #exponential #kernel #learning #product line
- Learning deep kernels for exponential family densities (WL, DJS, HS, AG), pp. 6737–6746.
- ICML-2019-WestphalB #testing
- Improving Model Selection by Employing the Test Data (MW, WB), pp. 6747–6756.
- ICML-2019-WhitehillR #automation #classification
- Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth (JW, AR), pp. 6757–6765.
- ICML-2019-WildnerK #markov #process
- Moment-Based Variational Inference for Markov Jump Processes (CW, HK), pp. 6766–6775.
- ICML-2019-WilkinsonARSS #analysis #probability
- End-to-End Probabilistic Inference for Nonstationary Audio Analysis (WJW, MRA, JDR, DS, AS), pp. 6776–6785.
- ICML-2019-WilliamsonM #metric
- Fairness risk measures (RCW, AKM), pp. 6786–6797.
- ICML-2019-WiqvistMPF #approximate #architecture #learning #network #statistics #summary
- Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation (SW, PAM, UP, JF), pp. 6798–6807.
- ICML-2019-WongSK
- Wasserstein Adversarial Examples via Projected Sinkhorn Iterations (EW, FRS, JZK), pp. 6808–6817.
- ICML-2019-WuCBTS #learning
- Imitation Learning from Imperfect Demonstration (YHW, NC, HB, VT, MS), pp. 6818–6827.
- ICML-2019-WuDSYHSRK #learning #matrix #metric
- Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling (SW, AD, SS, FXY, DNHR, DS, AR, SK), pp. 6828–6839.
- ICML-2019-WuLZ #multi #optimisation #reuse
- Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin (XZW, SL, ZHZ), pp. 6840–6849.
- ICML-2019-WuRL
- Deep Compressed Sensing (YW, MR, TPL), pp. 6850–6860.
- ICML-2019-WuSZFYW #graph #network
- Simplifying Graph Convolutional Networks (FW, AHSJ, TZ, CF, TY, KQW), pp. 6861–6871.
- ICML-2019-WuWKL #adaptation #symmetry
- Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment (YW, EW, DK, ZCL), pp. 6872–6881.
- ICML-2019-XieCJZZ #on the #performance #scalability
- On Scalable and Efficient Computation of Large Scale Optimal Transport (YX, MC, HJ, TZ, HZ), pp. 6882–6892.
- ICML-2019-XieKG #distributed #fault tolerance #named #probability
- Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance (CX, SK, IG), pp. 6893–6901.
- ICML-2019-XieWLZL
- Differentiable Linearized ADMM (XX, JW, GL, ZZ, ZL), pp. 6902–6911.
- ICML-2019-XingNL #approximate
- Calibrated Approximate Bayesian Inference (HX, GN, JL), pp. 6912–6920.
- ICML-2019-XuL #clustering
- Power k-Means Clustering (JX, KL), pp. 6921–6931.
- ICML-2019-XuLZC #graph #learning
- Gromov-Wasserstein Learning for Graph Matching and Node Embedding (HX, DL, HZ, LC), pp. 6932–6941.
- ICML-2019-XuQLJY #convergence #optimisation #probability
- Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence (YX, QQ, QL, RJ, TY), pp. 6942–6951.
- ICML-2019-XuRDLF #learning
- Learning a Prior over Intent via Meta-Inverse Reinforcement Learning (KX, ER, ADD, SL, CF), pp. 6952–6962.
- ICML-2019-XuSS
- Variational Russian Roulette for Deep Bayesian Nonparametrics (KX, AS, CAS), pp. 6963–6972.
- ICML-2019-YadavKMM #clustering #exponential
- Supervised Hierarchical Clustering with Exponential Linkage (NY, AK, NM, AM), pp. 6973–6983.
- ICML-2019-YangD #learning #proving #theorem
- Learning to Prove Theorems via Interacting with Proof Assistants (KY, JD), pp. 6984–6994.
- ICML-2019-YangW #parametricity #using
- Sample-Optimal Parametric Q-Learning Using Linearly Additive Features (LY, MW), pp. 6995–7004.
- ICML-2019-YangWLCXS0X #named #network #performance
- LegoNet: Efficient Convolutional Neural Networks with Lego Filters (ZY, YW, CL, HC, CX, BS, CX0, CX0), pp. 7005–7014.
- ICML-2019-YangZKBWS #precise #probability
- SWALP : Stochastic Weight Averaging in Low Precision Training (GY, TZ, PK, JB, AGW, CDS), pp. 7015–7024.
- ICML-2019-YangZXK #effectiveness #estimation #matrix #named #robust #towards
- ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation (YY, GZ, ZX, DK), pp. 7025–7034.
- ICML-2019-YaoK0 #performance
- Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations (QY, JTYK, BH0), pp. 7035–7044.
- ICML-2019-YaoWHL
- Hierarchically Structured Meta-learning (HY, YW, JH, ZL), pp. 7045–7054.
- ICML-2019-0002WF #clustering #complexity #kernel #query
- Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel $k$-means Clustering (TY0, DPW, MF), pp. 7055–7063.
- ICML-2019-YeS #comprehension #geometry
- Understanding Geometry of Encoder-Decoder CNNs (JCY, WKS), pp. 7064–7073.
- ICML-2019-YinCRB #distributed #learning
- Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning (DY, YC0, KR, PLB), pp. 7074–7084.
- ICML-2019-YinRB #complexity #robust
- Rademacher Complexity for Adversarially Robust Generalization (DY, KR, PLB), pp. 7085–7094.
- ICML-2019-YinYZ #category theory #named
- ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables (MY, YY, MZ), pp. 7095–7104.
- ICML-2019-YingKCR0H #architecture #named #towards
- NAS-Bench-101: Towards Reproducible Neural Architecture Search (CY, AK, EC, ER, KM0, FH), pp. 7105–7114.
- ICML-2019-YoonSM #adaptation #learning #named #network
- TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning (SWY, JS, JM), pp. 7115–7123.
- ICML-2019-YouWLJ #adaptation #towards
- Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation (KY, XW, ML, MIJ), pp. 7124–7133.
- ICML-2019-YouYL #graph #network
- Position-aware Graph Neural Networks (JY, RY, JL), pp. 7134–7143.
- ICML-2019-YoungBN #generative #learning #modelling #synthesis
- Learning Neurosymbolic Generative Models via Program Synthesis (HY, OB, MN), pp. 7144–7153.
- ICML-2019-YuCGY #graph #learning #named #network
- DAG-GNN: DAG Structure Learning with Graph Neural Networks (YY, JC, TG, MY), pp. 7154–7163.
- ICML-2019-Yu0YNTS #how #question
- How does Disagreement Help Generalization against Label Corruption? (XY, BH0, JY, GN, IWT, MS), pp. 7164–7173.
- ICML-2019-YuJ #communication #complexity #on the #optimisation #parallel #probability
- On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization (HY, RJ), pp. 7174–7183.
- ICML-2019-YuJY #analysis #communication #distributed #linear #on the #optimisation #performance
- On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization (HY, RJ, SY), pp. 7184–7193.
- ICML-2019-YuSE #learning #multi
- Multi-Agent Adversarial Inverse Reinforcement Learning (LY, JS, SE), pp. 7194–7201.
- ICML-2019-YuTRKSAZL #distributed #learning #network
- Distributed Learning over Unreliable Networks (CY, HT, CR, SK, AS, DA, CZ, JL0), pp. 7202–7212.
- ICML-2019-YuanL #adaptation #analysis #component #online
- Online Adaptive Principal Component Analysis and Its extensions (JY, AGL), pp. 7213–7221.
- ICML-2019-YuanLX #composition #generative #infinity #modelling #representation
- Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation (JY, BL, XX), pp. 7222–7231.
- ICML-2019-YuanZLS #difference #modelling
- Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory (HY, YZ, CJL, QS), pp. 7232–7241.
- ICML-2019-YunZYLA #analysis #learning #optimisation #statistics
- Trimming the l₁ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning (JY, PZ, EY, ACL, AYA), pp. 7242–7251.
- ICML-2019-YurochkinAGGHK #learning #network #parametricity
- Bayesian Nonparametric Federated Learning of Neural Networks (MY, MA, SG, KHG, TNH, YK), pp. 7252–7261.
- ICML-2019-YurochkinGSN #geometry
- Dirichlet Simplex Nest and Geometric Inference (MY, AG, YS, XN), pp. 7262–7271.
- ICML-2019-YurtseverFC #framework
- A Conditional-Gradient-Based Augmented Lagrangian Framework (AY, OF, VC), pp. 7272–7281.
- ICML-2019-YurtseverSC #difference #probability
- Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator (AY, SS, VC), pp. 7282–7291.
- ICML-2019-ZablockiBSPG #learning #recognition
- Context-Aware Zero-Shot Learning for Object Recognition (EZ, PB, LS, BP, PG), pp. 7292–7303.
- ICML-2019-ZanetteB #bound #learning #problem #using
- Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds (AZ, EB), pp. 7304–7312.
- ICML-2019-ZengLLY #convergence #coordination #learning
- Global Convergence of Block Coordinate Descent in Deep Learning (JZ, TTKL, SL, YY0), pp. 7313–7323.
- ICML-2019-Zhang #invariant #network
- Making Convolutional Networks Shift-Invariant Again (RZ), pp. 7324–7334.
- ICML-2019-ZhangAD0N #feedback #robust
- Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback (CZ, AA, HDI, JL0, SN), pp. 7335–7344.
- ICML-2019-ZhangCC
- When Samples Are Strategically Selected (HZ, YC0, VC), pp. 7345–7353.
- ICML-2019-ZhangGMO #generative #network #self
- Self-Attention Generative Adversarial Networks (HZ0, IJG, DNM, AO), pp. 7354–7363.
- ICML-2019-ZhangHK #design #distributed #graph #named #network
- Circuit-GNN: Graph Neural Networks for Distributed Circuit Design (GZ, HH, DK), pp. 7364–7373.
- ICML-2019-ZhangHY #learning #named #performance #recognition #visual notation
- LatentGNN: Learning Efficient Non-local Relations for Visual Recognition (SZ, XH, SY), pp. 7374–7383.
- ICML-2019-ZhangJHHL #clustering #collaboration
- Neural Collaborative Subspace Clustering (TZ, PJ, MH, WbH, HL), pp. 7384–7393.
- ICML-2019-ZhangL #incremental #kernel #learning #online #random #sketching
- Incremental Randomized Sketching for Online Kernel Learning (XZ, SL), pp. 7394–7403.
- ICML-2019-0002LLJ #adaptation #algorithm
- Bridging Theory and Algorithm for Domain Adaptation (YZ0, TL, ML, MIJ), pp. 7404–7413.
- ICML-2019-ZhangLZ #adaptation
- Adaptive Regret of Convex and Smooth Functions (LZ0, TYL, ZHZ), pp. 7414–7423.
- ICML-2019-ZhangP #correlation #modelling #random
- Random Function Priors for Correlation Modeling (AZ, JWP), pp. 7424–7433.
- ICML-2019-ZhangS #learning #network
- Co-Representation Network for Generalized Zero-Shot Learning (FZ, GS), pp. 7434–7443.
- ICML-2019-ZhangVSA0L #learning #modelling #named
- SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning (MZ, SV, LS, PA, MJJ0, SL), pp. 7444–7453.
- ICML-2019-ZhangX #incremental #random
- A Composite Randomized Incremental Gradient Method (JZ, LX), pp. 7454–7462.
- ICML-2019-ZhangY #estimation #modelling #multi #performance
- Fast and Stable Maximum Likelihood Estimation for Incomplete Multinomial Models (CZ, GY), pp. 7463–7471.
- ICML-2019-ZhangYJXGJ #robust #trade-off
- Theoretically Principled Trade-off between Robustness and Accuracy (HZ, YY, JJ, EPX, LEG, MIJ), pp. 7472–7482.
- ICML-2019-ZhangYT #learning #novel #policy
- Learning Novel Policies For Tasks (YZ, WY, GT), pp. 7483–7492.
- ICML-2019-ZhangZLWZ #algorithm #matrix #orthogonal
- Greedy Orthogonal Pivoting Algorithm for Non-Negative Matrix Factorization (KZ, SZ, JL, JW, JZ), pp. 7493–7501.
- ICML-2019-ZhangZ #network
- Interpreting Adversarially Trained Convolutional Neural Networks (TZ, ZZ), pp. 7502–7511.
- ICML-2019-ZhangZT #adaptation #monte carlo #multi #testing
- Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits (MJZ, JZ, DT), pp. 7512–7522.
- ICML-2019-0002CZG #adaptation #invariant #learning #on the
- On Learning Invariant Representations for Domain Adaptation (HZ0, RTdC, KZ0, GJG), pp. 7523–7532.
- ICML-2019-ZhaoFNG
- Metric-Optimized Example Weights (SZ, MMF, HN, MRG), pp. 7533–7542.
- ICML-2019-ZhaoHDSZ #network #using
- Improving Neural Network Quantization without Retraining using Outlier Channel Splitting (RZ, YH, JD, CDS, ZZ), pp. 7543–7552.
- ICML-2019-ZhaoST #learning #multi
- Maximum Entropy-Regularized Multi-Goal Reinforcement Learning (RZ, XS0, VT), pp. 7553–7562.
- ICML-2019-Zhou0Y #optimisation #probability
- Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization (BZ, FC0, YY), pp. 7563–7573.
- ICML-2019-ZhouG #bound #optimisation
- Lower Bounds for Smooth Nonconvex Finite-Sum Optimization (DZ, QG), pp. 7574–7583.
- ICML-2019-ZhouLSYW00Z #generative
- Lipschitz Generative Adversarial Nets (ZZ, JL, YS, LY, HW, WZ0, YY0, ZZ), pp. 7584–7593.
- ICML-2019-ZhouLLLZZ #comprehension #network #towards
- Toward Understanding the Importance of Noise in Training Neural Networks (MZ, TL, YL, DL, EZ, TZ), pp. 7594–7602.
- ICML-2019-ZhouYWP #approach #architecture #named
- BayesNAS: A Bayesian Approach for Neural Architecture Search (HZ, MY, JW0, WP), pp. 7603–7613.
- ICML-2019-ZhuHLTSG
- Transferable Clean-Label Poisoning Attacks on Deep Neural Nets (CZ, WRH, HL, GT, CS, TG), pp. 7614–7623.
- ICML-2019-ZhuSLHB #fault tolerance #graph #learning
- Improved Dynamic Graph Learning through Fault-Tolerant Sparsification (CJZ, SS, KyL, SH, JB), pp. 7624–7633.
- ICML-2019-ZhuW #difference #privacy
- Poission Subsampled Rényi Differential Privacy (YZ0, YXW), pp. 7634–7642.
- ICML-2019-ZhuWS #classification #learning
- Learning Classifiers for Target Domain with Limited or No Labels (PZ, HW, VS), pp. 7643–7653.
- ICML-2019-ZhuWYWM #behaviour #probability
- The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects (ZZ, JW, BY, LW, JM), pp. 7654–7663.
- ICML-2019-ZhuangCO #learning #online #optimisation #probability
- Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization (ZZ, AC, FO), pp. 7664–7672.
- ICML-2019-ZieglerR #normalisation #sequence
- Latent Normalizing Flows for Discrete Sequences (ZMZ, AMR), pp. 7673–7682.
- ICML-2019-ZimmertLW #probability
- Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously (JZ, HL, CYW), pp. 7683–7692.
- ICML-2019-ZintgrafSKHW #adaptation #performance
- Fast Context Adaptation via Meta-Learning (LMZ, KS, VK, KH, SW), pp. 7693–7702.
- ICML-2019-ZrnicH #adaptation #data analysis
- Natural Analysts in Adaptive Data Analysis (TZ, MH), pp. 7703–7711.