BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
parallel (57)
data (40)
graph (21)
comput (19)
use (17)

Stem massiv$ (all stems)

189 papers:

SIGMODSIGMOD-2015-AllardHMP #clustering #named #privacy
Chiaroscuro: Transparency and Privacy for Massive Personal Time-Series Clustering (TA, GH, FM, EP), pp. 779–794.
SIGMODSIGMOD-2015-LiuSWRH #corpus #mining #quality
Mining Quality Phrases from Massive Text Corpora (JL, JS, CW, XR, JH), pp. 1729–1744.
SIGMODSIGMOD-2015-WangZZS #in memory #named
SharkDB: An In-Memory Storage System for Massive Trajectory Data (HW, KZ, XZ, SWS), pp. 1099–1104.
VLDBVLDB-2015-AkidauBCCFLMMPS #approach #bound #correctness #data flow #latency
The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing (TA, RB, CC, SC, RFM, RL, SM, DM, FP, ES, SW), pp. 1792–1803.
VLDBVLDB-2015-HarbiAKM #dataset #query #rdf
Evaluating SPARQL Queries on Massive RDF Datasets (RH, IA, PK, NM), pp. 1848–1859.
VLDBVLDB-2015-LiuLYXW #graph #independence #set #towards
Towards Maximum Independent Sets on Massive Graphs (YL, JL, HY, XX, ZW), pp. 2122–2133.
CHICHI-2015-KleimanLDFC #image #named #set #similarity
DynamicMaps: Similarity-based Browsing through a Massive Set of Images (YK, JL, DD, YF, DCO), pp. 995–1004.
CSCWCSCW-2015-KulkarniCKBK #distance #matter #named
Talkabout: Making Distance Matter with Small Groups in Massive Classes (CK, JC, YK, MSB, SRK), pp. 1116–1128.
CSCWCSCW-2015-Leavitt #community #online #quote #single use
“This is a Throwaway Account”: Temporary Technical Identities and Perceptions of Anonymity in a Massive Online Community (AL), pp. 317–327.
CSCWCSCW-2015-LiCYH #online
Massive Open Online Proctor: Protecting the Credibility of MOOCs certificates (XL, KmC, YY, AGH), pp. 1129–1137.
ICMLICML-2015-BarbosaENW #dataset #distributed #power of
The Power of Randomization: Distributed Submodular Maximization on Massive Datasets (RdPB, AE, HLN, JW), pp. 1236–1244.
KDDKDD-2015-RenEWH #approach #automation #corpus #mining #network #recognition #type system
Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach (XR, AEK, CW, JH), pp. 2319–2320.
KDDKDD-2015-VanchinathanMRK
Discovering Valuable items from Massive Data (HPV, AM, CAR, DK, AK), pp. 1195–1204.
KDDKDD-2015-ZhangZMH #assembly #co-evolution #named #performance
Assembler: Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data (CZ, YZ, XM, JH), pp. 1415–1424.
SIGIRSIGIR-2015-CanutoGSRM #approach #classification #documentation #parallel #performance #scalability
An Efficient and Scalable MetaFeature-based Document Classification Approach based on Massively Parallel Computing (SDC, MAG, WS, TR, WM), pp. 333–342.
SACSAC-2015-HublerRFS #data flow #named #using
P-SaMI: a data-flow pattern to perform massively-parallel molecular docking experiments using a fully-flexible receptor model (PH, DDAR, JEF, ONdS), pp. 54–57.
SACSAC-2015-XuanLXT #empirical #fault #metric #predict #set #using
Evaluating defect prediction approaches using a massive set of metrics: an empirical study (XX, DL, XX, YT), pp. 1644–1647.
ICSTSAT-2015-BalyoSS #named #parallel #satisfiability
HordeSat: A Massively Parallel Portfolio SAT Solver (TB, PS, CS), pp. 156–172.
DATEDATE-2014-DinechinAPL #parallel
Time-critical computing on a single-chip massively parallel processor (BDdD, DvA, MP, GL), pp. 1–6.
PODSPODS-2014-Cohen #analysis #graph #sketching
All-distances sketches, revisited: HIP estimators for massive graphs analysis (EC), pp. 88–99.
SIGMODSIGMOD-2014-ChangWMJMGLCWSB #named #parallel #sql
HAWQ: a massively parallel processing SQL engine in hadoop (LC, ZW, TM, LJ, LM, AG, LL, JC, CW, GS, MB), pp. 1223–1234.
SIGMODSIGMOD-2014-HanW #mining
Mining latent entity structures from massive unstructured and interconnected data (JH, CW), pp. 1409–1410.
SIGMODSIGMOD-2014-SatishSPSPHSYD #dataset #framework #graph #navigation #using
Navigating the maze of graph analytics frameworks using massive graph datasets (NS, NS, MMAP, JS, JP, MAH, SS, ZY, PD), pp. 979–990.
ITiCSEITiCSE-2014-McKinseyJFG #online #programming
Remote pair programming (RPP) in massively open online courses (MOOCs) (JM, SJ, AF, DDG), p. 340.
CIKMCIKM-2014-WenR #behaviour #identification #mining #online
Identifying Latent Study Habits by Mining Learner Behavior Patterns in Massive Open Online Courses (MW, CPR), pp. 1983–1986.
ICMLICML-c1-2014-GiesekeHOI #nearest neighbour #query
Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs (FG, JH, CEO, CI), pp. 172–180.
KDDKDD-2014-BadanidiyuruMKK #on the fly #streaming #summary
Streaming submodular maximization: massive data summarization on the fly (AB, BM, AK, AK), pp. 671–680.
KDDKDD-2014-YuCRW #detection
Detecting moving object outliers in massive-scale trajectory streams (YY, LC, EAR, QW), pp. 422–431.
RecSysRecSys-2014-YangAR #constraints #online #recommendation
Question recommendation with constraints for massive open online courses (DY, DA, CPR), pp. 49–56.
RERE-2014-Daneva #approach #game studies #how #multi #online #requirements
How practitioners approach gameplay requirements? An exploration into the context of massive multiplayer online role-playing games (MD), pp. 3–12.
HPCAHPCA-2014-JiaSM #memory management #named #parallel
MRPB: Memory request prioritization for massively parallel processors (WJ, KAS, MM), pp. 272–283.
ISMMISMM-2014-EgielskiHZ #parallel
Massive atomics for massive parallelism on GPUs (IJE, JH, EZZ), pp. 93–103.
DACDAC-2013-HanZF #gpu #named #parallel #simulation
TinySPICE: a parallel SPICE simulator on GPU for massively repeated small circuit simulations (LH, XZ, ZF), p. 8.
DACDAC-2013-YeWHL #parallel #segmentation #simulation
Time-domain segmentation based massively parallel simulation for ADCs (ZY, BW, SH, YL), p. 6.
SIGMODSIGMOD-2013-ChristensenL #adaptation
Adaptive log compression for massive log data (RC, FL), pp. 1283–1284.
SIGMODSIGMOD-2013-HuTC #graph
Massive graph triangulation (XH, YT, CWC), pp. 325–336.
SIGMODSIGMOD-2013-WhangYYSKK #approach #named #parallel #using
ODYS: an approach to building a massively-parallel search engine using a DB-IR tightly-integrated parallel DBMS for higher-level functionality (KYW, TSY, YMY, IYS, HYK, IJK), pp. 313–324.
SIGMODSIGMOD-2013-ZhangYQCL #graph #performance
I/O efficient: computing SCCs in massive graphs (ZZ, JXY, LQ, LC, XL), pp. 181–192.
ITiCSEITiCSE-2013-VihavainenVLK #case study #experience
Massive increase in eager TAs: experiences from extreme apprenticeship-based CS1 (AV, TV, ML, JK), pp. 123–128.
CSMRCSMR-2013-ScannielloECG #gpu #using
Using the GPU to Green an Intensive and Massive Computation System (GS, UE, GC, CG), pp. 384–387.
MSRMSR-2013-AllamanisS13a #mining #modelling #repository #source code #using
Mining source code repositories at massive scale using language modeling (MA, CAS), pp. 207–216.
HCIDHM-HB-2013-MaruyamaKD #3d #simulation
Simulating a Walk of Digital Human Model Directly in Massive 3D Laser-Scanned Point Cloud of Indoor Environments (TM, SK, HD), pp. 366–375.
CIKMCIKM-2013-ArifuzzamanKM #algorithm #named #network #parallel
PATRIC: a parallel algorithm for counting triangles in massive networks (SA, MK, MVM), pp. 529–538.
CIKMCIKM-2013-TangwongsanPT #graph #parallel #streaming
Parallel triangle counting in massive streaming graphs (KT, AP, ST), pp. 781–786.
CIKMCIKM-2013-ZhangLL #performance #privacy #robust #streaming
An efficient and robust privacy protection technique for massive streaming choice-based information (JZ, XL, YL), pp. 1169–1172.
KDDKDD-2013-AltinigneliPB #parallel #using
Massively parallel expectation maximization using graphics processing units (MCA, CP, CB), pp. 838–846.
KDDKDD-2013-ChandolaSS #information management
Knowledge discovery from massive healthcare claims data (VC, SRS, JCS), pp. 1312–1320.
SACSAC-2013-HapfelmeierSK #dataset #incremental #linear #performance
Incremental linear model trees on massive datasets: keep it simple, keep it fast (AH, JS, SK), pp. 129–135.
HPCAHPCA-2013-SampsonYWCW #3d #parallel
Sonic Millip3De: A massively parallel 3D-stacked accelerator for 3D ultrasound (RS, MY, SW, CC, TFW), pp. 318–329.
HPDCHPDC-2013-SuAWMWA #dataset #distributed #using
Taming massive distributed datasets: data sampling using bitmap indices (YS, GA, JW, KM, JW, JPA), pp. 13–24.
HTHT-2012-DinhNT #effectiveness #network #question #social
Cheap, easy, and massively effective viral marketing in social networks: truth or fiction? (TND, DTN, MTT), pp. 165–174.
SIGMODSIGMOD-2012-ZhouBL #clustering #distributed
Advanced partitioning techniques for massively distributed computation (JZ, NB, WL), pp. 13–24.
VLDBVLDB-2012-AlbutiuKN #database #in memory #manycore #memory management #parallel
Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems (MCA, AK, TN), pp. 1064–1075.
VLDBVLDB-2012-RoyDMSW #analysis
Massive Genomic Data Processing and Deep Analysis (AR, YD, EM, YS, BLW), pp. 1906–1909.
VLDBVLDB-2012-Sahin #challenge #clustering #self
Challenges in Economic Massive Content Storage and Management (MCSAM) in the Era of Self-Organizing, Self-Expanding and Self-Linking Data Clusters (KES), p. 1698.
VLDBVLDB-2012-WangC #composition #network
Truss Decomposition in Massive Networks (JW, JC), pp. 812–823.
CIKMCIKM-2012-ChoiLKLM #named #parallel #query #xml
HadoopXML: a suite for parallel processing of massive XML data with multiple twig pattern queries (HC, KHL, SHK, YJL, BM), pp. 2737–2739.
CIKMCIKM-2012-MaRHMHZCL #performance
An efficient index for massive IOT data in cloud environment (YM, JR, WH, XM, XH, YZ, YC, CL), pp. 2129–2133.
ICPRICPR-2012-ChenS #multi
Bone suppression in chest radiographs by means of anatomically specific multiple massive-training ANNs (SC, KS), pp. 17–20.
KDDKDD-2012-RaederSDPP #design #predict #robust
Design principles of massive, robust prediction systems (TR, OS, BD, CP, FJP), pp. 1357–1365.
HPDCHPDC-2012-LohrmannWK #constraints
Massively-parallel stream processing under QoS constraints with Nephele (BL, DW, OK), pp. 271–282.
ICSTSAT-2012-ArbelaezC #parallel #satisfiability #towards
Towards Massively Parallel Local Search for SAT — (Poster Presentation) (AA, PC), pp. 481–482.
DACDAC-2011-ZhaoF #3d #gpu #parallel #performance
Fast multipole method on GPU: tackling 3-D capacitance extraction on massively parallel SIMD platforms (XZ, ZF), pp. 558–563.
DATEDATE-2011-Furber #architecture
Biologically-inspired massively-parallel architectures — Computing beyond a million processors (SBF), p. 1.
DATEDATE-2011-PandeCPMBMG #energy #performance #question
Sustainability through massively integrated computing: Are we ready to break the energy efficiency wall for single-chip platforms? (PPP, FC, DP, IM, PB, RM, AG), pp. 1656–1661.
VLDBVLDB-2011-ZeitlerR #query
Massive Scale-out of Expensive Continuous Queries (EZ, TR), pp. 1181–1188.
VLDBVLDB-2011-ZhuQLYHY #mining #network #scalability
Mining Top-K Large Structural Patterns in a Massive Network (FZ, QQ, DL, XY, JH, PSY), pp. 807–818.
CIKMCIKM-2011-ChenWDZ #correlation #monitoring
Continuously monitoring the correlations of massive discrete streams (YC, WW, XD, XZ), pp. 1571–1576.
KDDKDD-2011-ChuC #network
Triangle listing in massive networks and its applications (SC, JC), pp. 672–680.
SACSAC-2011-CaiFU #database #recognition #scalability
Massive character recognition with a large ground-truthed database (WC, YF, SU), pp. 240–244.
DACDAC-2010-GaoYWY #analysis #correlation #estimation #performance #statistics
Efficient tail estimation for massive correlated log-normal sums: with applications in statistical leakage analysis (MG, ZY, YW, ZY), pp. 475–480.
SIGMODSIGMOD-2010-ChengKFYZ #clique #network
Finding maximal cliques in massive networks by H*-graph (JC, YK, AWCF, JXY, LZ), pp. 447–458.
SIGMODSIGMOD-2010-MueenNL #approximate #correlation #performance
Fast approximate correlation for massive time-series data (AM, SN, JL), pp. 171–182.
SIGMODSIGMOD-2010-WangWLWWLTXL #dataset #detection #named
MapDupReducer: detecting near duplicates over massive datasets (CW, JW, XL, WW, HW, HL, WT, JX, RL), pp. 1119–1122.
VLDBVLDB-2010-AlexandrovBEHHKMNW #data analysis #parallel
Massively Parallel Data Analysis with PACTs on Nephele (AA, DB, SE, MH, FH, OK, VM, EN, DW), pp. 1625–1628.
VLDBVLDB-2010-LobozSN #named #performance
DataGarage: Warehousing Massive Performance Data on Commodity Servers (CL, SS, SN), pp. 1447–1458.
ICEISICEIS-ISAS-2010-BezerraHS #collaboration #data access
An Access Control Model for Massive Collaborative Edition (JdMB, CMH, EMdS), pp. 135–140.
CIKMCIKM-2010-NambiarGGM #data transformation
Massive structured data management solution (UN, RG, HG, MKM), pp. 1905–1908.
CIKMCIKM-2010-ZhangLY #graph #named
SUMMA: subgraph matching in massive graphs (SZ, SL, JY), pp. 1285–1288.
ICPRICPR-2010-MoraledaH #image #scalability #towards
Toward Massive Scalability in Image Matching (JM, JJH), pp. 3424–3427.
QAPLQAPL-2010-StefanekHB #analysis #parallel #performance
A new tool for the performance analysis of massively parallel computer systems (AS, RAH, JTB), pp. 159–181.
HPDCHPDC-2010-PlossMMGG #evaluation #multi #named #performance
Netlag: a performance evaluation tool for massively multi-user networked applications (AP, DM, PM, FG, SG), pp. 573–580.
HPDCHPDC-2010-UrbaniMB #pipes and filters #semantics #web
Massive Semantic Web data compression with MapReduce (JU, JM, HEB), pp. 795–802.
PPoPPPPoPP-2010-RadojkovicCVPCNV #concurrent #network #parallel #thread
Thread to strand binding of parallel network applications in massive multi-threaded systems (PR, VC, JV, AP, FJC, MN, MV), pp. 191–202.
DACDAC-2009-LevitanC #parallel
Massively parallel processing: it’s déjà vu all over again (SPL, DMC), pp. 534–538.
DATEDATE-2009-PalmersMSG #multi
Massively multi-topology sizing of analog integrated circuits (PP, TM, MS, GGEG), pp. 706–711.
VLDBVLDB-2009-AggarwalXY #graph #named
GConnect: A Connectivity Index for Massive Disk-resident Graphs (CCA, YX, PSY), pp. 862–873.
VLDBVLDB-2009-PandaHBB #learning #named #parallel #pipes and filters
PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce (BP, JH, SB, RJB), pp. 1426–1437.
VLDBVLDB-2009-ReevesLNZ #multi
Managing Massive Time Series Streams with MultiScale Compressed Trickles (GR, JL, SN, FZ), pp. 97–108.
VLDBVLDB-2009-SallesCSDGKW #evaluation #game studies #multi #online
An Evaluation of Checkpoint Recovery for Massively Multiplayer Online Games (MAVS, TC, BS, AJD, JG, CK, WMW), pp. 1258–1269.
HCIHCI-VAD-2009-HsuC09a #design #game studies #interface #multi #online
Exploring the Elements and Design Criteria of Massively-Multiplayer Online Role-Playing Game (MMORPG) Interfaces (CCH, ECHC), pp. 325–334.
HCIOCSC-2009-TaylorT #analysis #game studies #multi #online
A Content Analysis of Interviews with Players of Massively Multiplayer Online Role-Play Games (MMORPGs): Motivating Factors and the Impact on Relationships (JT, JT), pp. 613–621.
VISSOFTVISSOFT-2009-BohnetKD #execution #visualisation
Visualizing massively pruned execution traces to facilitate trace exploration (JB, MK, JD), pp. 57–64.
CIKMCIKM-2009-Whang #integration
DB-IR integration and its application to a massively-parallel search engine (KYW), pp. 1–2.
KDDKDD-2009-TsourakakisKMF #graph #named
DOULION: counting triangles in massive graphs with a coin (CET, UK, GLM, CF), pp. 837–846.
SACSAC-2009-HohfeldGBBSS #collaboration #multi #self
Self-organizing collaborative filtering in global-scale massive multi-user virtual environments (AH, PG, AB, JB, HS, IS), pp. 1719–1723.
ICLPICLP-2009-Ashley-Rollman #distributed #logic programming #research #summary
Research Summary: Logic Programming for Massively Distributed Systems (MPAR), pp. 527–529.
DACDAC-2008-YanZTCM #distributed #linear #named #network #order #reduction
DeMOR: decentralized model order reduction of linear networks with massive ports (BY, LZ, SXDT, JC, BM), pp. 409–414.
DATEDATE-2008-HosseinabadyKMP #architecture #energy #graph #latency #performance #scalability
De Bruijn Graph as a Low Latency Scalable Architecture for Energy Efficient Massive NoCs (MH, MRK, JM, DKP), pp. 1370–1373.
SIGMODSIGMOD-2008-GuptaDG #game studies #multi #named #online #scalability
SEMMO: a scalable engine for massively multiplayer online games (NG, AJD, JG), pp. 1235–1238.
SIGMODSIGMOD-2008-JohnsonMSS #clustering #data type #monitoring #network
Query-aware partitioning for monitoring massive network data streams (TJ, SMM, VS, OS), pp. 1135–1146.
VLDBVLDB-2008-ChaikenJLRSWZ #named #parallel #performance #set
SCOPE: easy and efficient parallel processing of massive data sets (RC, BJ, PÅL, BR, DS, SW, JZ), pp. 1265–1276.
ICGTICGT-2008-KreowskiK #framework #graph #parallel
Graph Multiset Transformation as a Framework for Massively Parallel Computation (HJK, SK), pp. 351–365.
ICPRICPR-2008-SuzukiSZ #network
Supervised enhancement of lung nodules by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD) (KS, ZS, JZ), pp. 1–4.
KDDKDD-2008-BecchettiBCG #algorithm #graph #performance
Efficient semi-streaming algorithms for local triangle counting in massive graphs (LB, PB, CC, AG), pp. 16–24.
KRKR-2008-MichaelV
A First Experimental Demonstration of Massive Knowledge Infusion (LM, LGV), pp. 378–389.
PPoPPPPoPP-2008-FernandesSS #gpu #parallel
Massive parallel LDPC decoding on GPU (GFPF, LS, VMMdS), pp. 83–90.
DACDAC-2007-Tabor #parallel #programming
Programming Living Cells to Function as Massively Parallel Computers (JJT), pp. 638–639.
ICDARICDAR-2007-Vincent #comprehension #documentation
Google Book Search: Document Understanding on a Massive Scale (LV), pp. 819–823.
SIGMODSIGMOD-2007-HongDGKRW #multi
Massively multi-query join processing in publish/subscribe systems (MH, AJD, JG, CK, MR, WMW), pp. 761–772.
SIGMODSIGMOD-2007-LiGLSZ #clustering #database #named #parallel
InfiniteDB: a pc-cluster based parallel massive database management system (JL, HG, JL, SS, WZ), pp. 899–909.
ICPCICPC-2007-CornelissenHZMWD #comprehension #execution #sequence #using
Understanding Execution Traces Using Massive Sequence and Circular Bundle Views (BC, DH, AZ, LM, JJvW, AvD), pp. 49–58.
CHICHI-2007-SeayK #game studies #online #problem #self
Project massive: self-regulation and problematic use of online gaming (AFS, REK), pp. 829–838.
HCIHCI-AS-2007-SongLH #case study #evaluation #framework #game studies #multi #online #usability
A New Framework of Usability Evaluation for Massively Multi-player Online Game: Case Study of “World of Warcraft” Game (SS, JL, IH), pp. 341–350.
HCIHCI-IPT-2007-NoguchiMS #embedded
Attentive Information Support with Massive Embedded Sensors in Room (HN, TM, TS), pp. 883–892.
VISSOFTVISSOFT-2007-HoltenCW #sequence #using #visualisation
Trace Visualization Using Hierarchical Edge Bundles and Massive Sequence Views (DH, BC, JJvW), pp. 47–54.
ICEISICEIS-EIS-2007-HeberlingHBH #collaboration #game studies #multi #online #peer-to-peer
Future Collaborative Systems Between Peer-to-Peer and Massive Multiplayer Online Games (MH, RH, TB, TH), pp. 340–346.
KDDKDD-2007-Aggarwal #classification #data type #framework #segmentation
A framework for classification and segmentation of massive audio data streams (CCA), pp. 1013–1017.
CGOCGO-2007-Buck #gpu #parallel #programming
GPU Computing: Programming a Massively Parallel Processor (IB), p. 17.
DACDAC-2006-LiS #linear #network #order #reduction
Model order reduction of linear networks with massive ports via frequency-dependent port packing (PL, WS), pp. 267–272.
VLDBVLDB-2006-DrineasM #algorithm #matrix #random #set
Randomized Algorithms for Matrices and Massive Data Sets (PD, MWM), p. 1269.
CHICHI-2006-DucheneautYNM #game studies #multi #online #quote #social
“Alone together?”: exploring the social dynamics of massively multiplayer online games (ND, NY, EN, RJM), pp. 407–416.
CIKMCIKM-2006-GonzalezHL #mining #set #workflow
Mining compressed commodity workflows from massive RFID data sets (HG, JH, XL), pp. 162–171.
CIKMCIKM-2006-NanavatiGDCDMJ #graph #on the
On the structural properties of massive telecom call graphs: findings and implications (AAN, SG, GD, DC, KD, SM, AJ), pp. 435–444.
KDDKDD-2006-GaoGEJ #clustering
Discovering significant OPSM subspace clusters in massive gene expression data (BJG, OLG, ME, SJMJ), pp. 922–928.
KDDKDD-2006-TsangKK #feature model #kernel #performance #set
Efficient kernel feature extraction for massive data sets (IWT, AK, JTK), pp. 724–729.
SACSAC-2006-HazelTVW #approach #named #scalability
TerraCost: a versatile and scalable approach to computing least-cost-path surfaces for massive grid-based terrains (TH, LT, JV, RW), pp. 52–57.
DACDAC-2005-GopeCJ #3d #multi #named #performance
DiMES: multilevel fast direct solver based on multipole expansions for parasitic extraction of massively coupled 3D microelectronic structures (DG, IC, VJ), pp. 159–162.
DocEngDocEng-2005-WhitingCCGHST #documentation #parsing #semantics #web
Enabling massive scale document transformation for the semantic web: the universal parsing agent™ (MAW, WC, NC, AG, RH, RS, ST), pp. 23–25.
VLDBVLDB-2005-GibsonKT #graph #scalability
Discovering Large Dense Subgraphs in Massive Graphs (DG, RK, AT), pp. 721–732.
ICSMEICSM-2005-AntoniolPH #maintenance #optimisation #search-based
Search-Based Techniques Applied to Optimization of Project Planning for a Massive Maintenance Project (GA, MDP, MH), pp. 240–249.
MODELSMoDELS-2005-BiaG #design #documentation #modelling #uml #web #xml
UML for Document Modeling: Designing Document Structures for Massive and Systematic Production of XML-based Web Contents (AB, JG), pp. 648–660.
MODELSMoDELS-2005-BiaG #design #documentation #modelling #uml #web #xml
UML for Document Modeling: Designing Document Structures for Massive and Systematic Production of XML-based Web Contents (AB, JG), pp. 648–660.
PPoPPPPoPP-2005-ChenWDKLA #game studies #locality #multi
Locality aware dynamic load management for massively multiplayer games (JC, BW, MD, BK, HL, CA), pp. 289–300.
DACDAC-2004-HanBBCJ #architecture #data transfer #distributed #flexibility #memory management #multi #performance #scalability
An efficient scalable and flexible data transfer architecture for multiprocessor SoC with massive distributed memory (SIH, AB, MB, SIC, AAJ), pp. 250–255.
DACDAC-2004-SilveiraP #algorithm #network #reduction
Exploiting input information in a model reduction algorithm for massively coupled parasitic networks (LMS, JRP), pp. 385–388.
VLDBVLDB-2004-LinKLLN #database #mining #monitoring #named #visual notation
VizTree: a Tool for Visually Mining and Monitoring Massive Time Series Databases (JL, EJK, SL, JPL, DMN), pp. 1269–1272.
CHICHI-2004-Cornett #design #game studies #multi #online #usability
The usability of massively multiplayer online roleplaying games: designing for new users (SC), pp. 703–710.
CSCWCSCW-2004-DucheneautM #case study #game studies #interactive #multi #online #social
The social side of gaming: a study of interaction patterns in a massively multiplayer online game (ND, RJM), pp. 360–369.
CIKMCIKM-2004-GollapudiS #algorithm #analysis #framework #set
Framework and algorithms for trend analysis in massive temporal data sets (SG, DS), pp. 168–177.
ICPRICPR-v3-2004-HanJ #fault tolerance #image #parallel
From Massively Parallel Image Processors to Fault-Tolerant Nanocomputers (JH, PJ), pp. 2–7.
KDDKDD-2004-LinKLLN #mining #monitoring #visual notation
Visually mining and monitoring massive time series (JL, EJK, SL, JPL, DMN), pp. 460–469.
ICSMEICSM-2003-Baxter #architecture #automation #re-engineering #tool support
Massively Reengineering Architectures With Automated Tools (IDB), p. 463.
KDDKDD-2003-BarryZM #architecture #information management #simulation
Architecting a knowledge discovery engine for military commanders utilizing massive runs of simulations (PSB, JZ, MM), pp. 699–704.
KDDKDD-2003-Houle #clustering #navigation #set
Navigating massive data sets via local clustering (MEH), pp. 547–552.
VLDBVLDB-2002-ConradGJM #database #logic #physics #using
Database Selection Using Actual Physical and Acquired Logical Collection Resources in a Massive Domain-specific Operational Environment (JGC, XSG, PJ, MM), pp. 71–82.
CSMRCSMR-2002-LuciaPSP #analysis #empirical #maintenance #process
Empirical Analysis of Massive Maintenance Processes (ADL, AP, SS, EP), pp. 5–14.
ICSMEICSM-2002-LuciaPSV #estimation #maintenance #process
Early Effort Estimation of Massive Maintenance Processes (ADL, MDP, SS, GV), pp. 234–237.
KDDKDD-2002-PalmerGF #data mining #graph #mining #named #performance #scalability
ANF: a fast and scalable tool for data mining in massive graphs (CRP, PBG, CF), pp. 81–90.
KDDKDD-2002-RidgewayM #analysis #dataset
Bayesian analysis of massive datasets via particle filters (GR, DM), pp. 5–13.
ICSMEICSM-2001-LuciaPPS #empirical #maintenance #process
Assessing Massive Maintenance Processes: An Empirical Study (ADL, AP, EP, SS), p. 451–?.
ICEISICEIS-v1-2001-GuimaraesT #architecture #distributed #named
SPINO: A Distributed Architecture for Massive Text Storage (JG, PT), pp. 244–248.
KDDKDD-2001-AggarwalP #concept #mining #re-engineering #semistructured data #set
Mining massively incomplete data sets by conceptual reconstruction (CCA, SP), pp. 227–232.
KDDKDD-2001-BiFK #mining
The “DGX” distribution for mining massive, skewed data (ZB, CF, FK), pp. 17–26.
HPDCHPDC-2001-KuntrarukP #data mining #distributed #feature model #mining #parallel #using
Massively Parallel Distributed Feature Extraction in Textual Data Mining Using HDDI(tm) (JK, WMP), pp. 363–370.
VLDBVLDB-2000-KoudasIM #identification #roadmap #set #sketching #using
Identifying Representative Trends in Massive Time Series Data Sets Using Sketches (PI, NK, SM), pp. 363–372.
STOCSTOC-2000-AielloCL #graph #random
A random graph model for massive graphs (WA, FRKC, LL), pp. 171–180.
KDDKDD-2000-ChenLP #estimation #incremental
Incremental quantile estimation for massive tracking (FC, DL, JCP), pp. 516–522.
HPDCHPDC-2000-GermainPMJ #named #parallel #problem
Uintah: A Massively Parallel Problem Solving Environment (JDdSG, SGP, JM, CRJ), pp. 33–42.
DACDAC-1999-AbramoviciSS #configuration management #hardware #satisfiability #using
A Massively-Parallel Easily-Scalable Satisfiability Solver Using Reconfigurable Hardware (MA, JTdS, DGS), pp. 684–690.
HPDCHPDC-1999-LeighJDBG #analysis #collaboration #set
A Methodology for Supporting Collaborative Exploratory Analysis of Massive Data Sets in Tele-Immersive Environments (JL, AEJ, TAD, SB, RLG), pp. 62–69.
VLDBVLDB-1998-Slutz #probability #sql #testing
Massive Stochastic Testing of SQL (DRS), pp. 618–622.
KDDKDD-1998-JohnsonD #set
Comparing Massive High-Dimensional Data Sets (TJ, TD), pp. 229–233.
KDDKDD-1998-PinheiroS #database #mining #semistructured data
Methods for Linking and Mining Massive Heterogeneous Databases (JCP, DXS), pp. 309–313.
KDDKDD-1997-SmythW #data analysis #set
Anytime Exploratory Data Analysis for Massive Data Sets (PS, DW), pp. 54–60.
SIGMODSIGMOD-1996-ChooOLCGBPS #architecture #named #parallel
Prospector: A Content-Based Multimedia Server for Massively Parallel Architectures (SC, WO, GL, HC, KG, AB, EP, DS), p. 551.
SIGMODSIGMOD-1996-OConnellISWABCCLPWW #architecture #parallel
A Content-Based Multimedia Server for Massively Parallel Architectures (WO, ITI, DS, CW, GA, AB, SC, PC, GL, EP, JW, TW), pp. 68–78.
SEKESEKE-1996-Shin #formal method
The Theory of Massive Cross-Referencing (DKS), pp. 454–552.
HPDCHPDC-1996-LuO #algorithm #parallel #performance
A Massively Parallel Fast Multipole Algorithm in Three Dimensions (EJLL, DIO), pp. 40–48.
SIGMODSIGMOD-1995-Levine #parallel
Order-of-Magnitude Advantage of TPC-C Though Massive Parallelism (CL), pp. 464–465.
KDDKDD-1995-SeshadriSW #data mining #feature model #mining
Feature Extraction for Massive Data Mining (VS, RS, SMW), pp. 258–262.
SACSAC-1995-GaberTGH #parallel
Embedding tree structures in massively parallel computers (JG, BT, GG, TH), pp. 210–214.
HPCAHPCA-1995-HurSFOK #array #design #fault #logic #parallel #simulation
Massively Parallel Array Processor for Logic, Fault, and Design Error Simulation (YH, SAS, ESF, GEO, SK), pp. 340–347.
HPCAHPCA-1995-KawanoKTA #architecture #parallel #thread
Fine-Grain Multi-Thread Processor Architecture for Massively Parallel Processing (TK, SK, RiT, MA), pp. 308–317.
SIGMODSIGMOD-1994-Ballinger #evolution #parallel
Evolving Teradata Decision Support for Massively Parallel Processing with UNIX (CB), p. 490.
ICGTTAGT-1994-DerkD #configuration management #fault tolerance #graph grammar #parallel
Reconfiguration Graph Grammar for Massively Parallel, Fault Tolerant Computers (MDD, LSD), pp. 185–195.
HPDCHPDC-1994-Sakai #bibliography #parallel
Overview of RWC Massively Parallel Computer Project (SS), p. 5.
CIKMCIKM-1993-Sussna #ambiguity #for free #network #semantics #using #word
Word Sense Disambiguation for Free-text Indexing Using a Massive Semantic Network (MS), pp. 67–74.
ICMLICML-1993-Baluja #algorithm #evolution #parallel #towards
The Evolution of Gennetic Algorithms: Towards Massive Parallelism (SB), pp. 1–8.
ICLPILPS-1993-TongL #concurrent #constraints #logic programming #parallel
Concurrent Constraint Logic Programming On Massively Parallel SIMD Computers (BMT, HfL), pp. 388–402.
PLDIPLDI-1992-ChenC #compilation #parallel #prototype
Prototyping Fortran-90 Compilers for Massively Parallel Machines (MCC, JRC), pp. 94–105.
ICMLML-1992-HunterHS #classification #performance
Efficient Classification of Massive, Unsegmented Datastreams (LH, NLH, DJS), pp. 224–232.
ISMMIWMM-1992-Yuasa #architecture #garbage collection #lisp #memory management #parallel
Memory Management and Garbage Collection of an Extended Common Lisp System for Massively Parallel SIMD Architecture (TY), pp. 490–506.
DACDAC-1990-CarlsonR #algorithm #design #evaluation #parallel #performance #verification
Design and Performance Evaluation of New Massively Parallel VLSI Mask Verification Algorithms in JIGSAW (ECC, RAR), pp. 253–259.
LISPLFP-1990-WalinskyB #compilation #functional #parallel #programming language
A Functional Programming Language Compiler for Massively Parallel Computers (CW, DB), pp. 131–138.
PPoPPPPoPP-1990-Nicol #analysis #parallel
Analysis of Synchronization in Massively Parallel Discrete-Event Sumulations (DMN), pp. 89–98.
DACDAC-1989-KravitzBR #parallel #simulation
Massively Parallel Switch-Level Simulation: A Feasibility Study (SAK, REB, RAR), pp. 91–97.
DACDAC-1989-NarayananP #algorithm #fault #parallel #simulation
A Massively Parallel Algorithm for Fault Simulation on the Connection Machine (VN, VP), pp. 734–737.
ICGTGG-1986-BaileyC #grammarware #graph grammar #parallel #specification
Graph Grammar Based Specification of Interconnection Structures for Massively Parallel Computation (DAB, JEC), pp. 73–85.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.